Skip to main content
Log in

Small-scale gradients of phytoplankton productivity in the littoral fringe

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Inshore-offshore transects and time-series sampling programs were carried out on the South shore of the St. Lawrence Estuary on several occasions during the summer season of 1978, 1979 and 1986. In 1981, a time-series sampling program was also conducted on three occasions during the summer. The sampling program was carried out to test the hypothesis that higher phytoplankton biomass and productivity occurs in the littoral zone than in the offshore zone. Our results showed consistently higher nutrient concentrations and lower seasonal variability in the littoral zone than offshore. However, biomass indicators (chlorophyll concentrations and phytoplankton cell counts) showed lower values nearshore than offshore, in contrast to primary production and photosynthetic capacity which were higher nearshore than offshore. These differences are interpreted with reference to the grazing activity of benthic filter-feeders, which probably helped to reduce the phytoplankton biomass in the littoral zone, while at the same time, they contributed to the rapid recycling of nutrients, thereby allowing much higher phytoplankton productivity nearshore than offshore. These results are in keeping with the ecological concept suggesting that exploitation can have a rejuvenating effect on an ecosystem which often is translated into enhanced productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Cota, G. F. C. (1985). Photoadaptation of high arctic ice algae. Nature, Lond. 315: 219–222

    Google Scholar 

  • Dame, R., Zingmark, R., Stevenson, H., Nelson, D. (1980). Filter feeder coupling between estuarine water column and benthic subsystems. In: Kennedy, V.S. (ed) Estuarine perspectives. Academic Press, New York, p. 521–526

    Google Scholar 

  • Demers, S., Legendre, L. (1979). Effects des marées sur la variation circadienne de la capacité photosynthétique du phytoplancton de l'estuaire du Saint-Laurent. J. exp. mar. Biol. Ecol. 39: 87–99

    Google Scholar 

  • Demers, S., Legendre, L. (1981). Mélange vertical et capacité photosynthétique du phytoplancton estuarien (estuaire du Saint-Laurent). Mar. Biol. 64: 243–250

    Google Scholar 

  • Demers, S., Legendre, L. (1982). Water column stability and photosynthetic capacity of estuarine phytoplankton: long-term relationships. Mar. Ecol. Prog. Ser. 7: 337–340

    Google Scholar 

  • Demers, S., Legendre, L., Therriault, J. C. (1986). Phytoplankton responses to vertical tidal mixing. In: Bowman, J., Yentsch, C. M., Peterson, W. T. (eds.) Tidal mixing and plankton dynamics. Springer-Verlag, Berlin Heidelberg, p. 1–40

    Google Scholar 

  • Demers, S., Therriault, J. C., Bourget, E., Bah, A. (1987). Resuspension in the shallow littoral zone of a macrotidal estuarine environment: wind influence. Limnol. Oceanogr. 32: 327–339

    Google Scholar 

  • Doty, M. S., Oguri, M. (1959). The carbon-fourteen technique for determining primary plankton productivity. Pubbl. Staz. zool. Napoli 31 (Suppl.): 70–94

    Google Scholar 

  • Falkowski, P. G. (1980). Light and shade adaptation in marine phytoplankton. In: Falkowski, P. G. (ed.) Primary productivity in the sea. Plenum Press, New York, p. 99–119

    Google Scholar 

  • Falkowski, P. G. (1984). Kinetics of adaptation to irradiance in Dunaliella tertiolecta, Photosynthetica 18: 62–68

    Google Scholar 

  • Fortier, L., Legendre, L. (1979). Le contrôle de la variabilité à court terme du phytoplancton: stabilité verticale et profondeur critique. J. Fish. Res. Bd. Can. 36: 1325–1335

    Google Scholar 

  • Fréchette, M. (1984). Interactions pélago-benthiques et flux d'énergie dans une population de moules bleues, Mytilus edulis L., de l'estuaire du Saint-Laurent. Ph.D. thesis. Université Laval, Québec.

    Google Scholar 

  • Fréchette, M., Bourget, E. (1985a). Energy flow between the Pelagic and Benthic zones: Factors controlling particulate organic matter available to an intertidal mussel bed. Can. J. Fish. aquat. Sciences 42: 1158–1165

    Google Scholar 

  • Fréchette, M., Bourget, E. (1985b). Food-limited growth of Mytilus edulis L. in relation to the benthic boundary layer. Can. J. Fish. aquat. Sciences 42: 1166–1170

    Google Scholar 

  • Fréchette M., Legendre, L. (1982). Phytoplankton photosynthetic response to light in an internal tide dominated environment. Estuaries, 5: 287–293

    Google Scholar 

  • Gosselin, M., Legendre, L., Demers, S., Ingram, R. G. (1985). Responses of sea-ice microalgae to climatic and fortnightly tidal energy inputs (Manitounuk Sound, Hudson Bay), Can. J. Fish. aquat. Sciences 42: 999–1006

    Google Scholar 

  • Holmes, R. W. (1970). The Secchi disk in turbid coastal waters. Limnol. Oceanogr. 15: 688–694

    Google Scholar 

  • Holm-Hansen, O., Riemann, B. (1978). Chlorophyll a determination: improvements in methodology. Oikos 30: 438–447

    Google Scholar 

  • Legendre, L. (1981). Hydrodynamic control of marine phytoplankton production: the paradox of stability. In: Nihoul, J.C.J. (ed.) Ecohydrodynamics. Elsevier, Amsterdam, p. 181–207

    Google Scholar 

  • Legendre, L., Demers, S. (1985). Auxiliary energy, ergoclines and aquatic biological production. Naturaliste can. (Rev. Ecol. Syst.) 112: 5–14

    Google Scholar 

  • Legendre, L., Demers, S., Lefaivre, D. (1986). Biological production at marine ergoclines. In: Nihoul, J. C. J. (ed.) Marine interfaces ecohydrodynamics. Elsevier, Amsterdam. p. 1–29

    Google Scholar 

  • Lewis, M. R., Smith, J. C. (1983). A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. Mar. Ecol. Prog. Ser. 13: 99–102

    Google Scholar 

  • Lund, J. W. G., Kipling, C., Lecren, E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170

    Google Scholar 

  • Margalef, R. (1963). On certain unifying principles in ecology. Am. Nat. 97: 357–374

    Google Scholar 

  • Margalef, R. (1967). Some concepts relative to the organization of plankton. Oceanogr. mar. Biol. A. Rev. 5: 257–289

    Google Scholar 

  • Margalef, R. (1978). What is an upwelling ecosystem? In: Boje R., Tomczak, M. (eds.) Upwelling ecosystem. Springer-Verlag, Berlin. p. 12–14

    Google Scholar 

  • Odum, E. P. (1969). The strategy of ecosystem development. Science, N.Y. 164: 262–269

    Google Scholar 

  • Odum, E. P. (1980). The status of three ecosystem level hypotheses regarding salt-marsh estuary: tidal subsidy, outwelling, and detritus based food chains. In: Kennedy, V. S. (ed.), Estuarine perspectives. Academic Press, New York, p. 485–495

    Google Scholar 

  • Odum, E. P., Finn, J. T., Franz, E. H. (1979). Perturbation theory and the subsidy-stress gradient. BioSci. 29: 349–352

    Google Scholar 

  • Pingree, R. D. (1978). Mixing and stabilization of phytoplankton distributions on the Northwest European continental shelf. In: Steele, J. M. (ed.) Spatial pattern in plankton communities. Plenum Press, New York, p. 181–200

    Google Scholar 

  • Platt, T., Gallegos, C. L., Harrison, W. G. (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. mar. Res. 38: 687–701

    Google Scholar 

  • Pugh, P. R. (1973). An evaluation of liquid scintillation counting techniques for use in aquatic primary production studies. Limnol. Oceanogr. 18: 310–319

    Google Scholar 

  • Savidge, G. (1979). Photosynthetic characteristics of marine phytoplankton from contrasting physical environments. Mar. Biol. 53: 1–12

    Google Scholar 

  • Steever, E. Z., Warren, R. S., Niering, W. A. (1976). Tidal energy subsidy and standing crop production of Spartina alterniflora. Estuarine coastal Mar. Sci. 4: 473–478

    Google Scholar 

  • Strickland, J. D., Parsons, T. R. (1972). A practical handbook of seawater analyses. Bull. Fish. Res. Bd Can. 167: p. 310

    Google Scholar 

  • Therriault, J. C., Levasseur, M. (1985). Control of phytoplankton production in the lower St. Lawrence estuary: light and freshwater runoff. Naturaliste can. (Rey. Ecol. Syst.) 112: 77–96

    Google Scholar 

  • Webb, K. L., D'Elia, C. F. (1980). Nutrient and oxygen redistribution during a spring neap tidal cycle in a temperate estuary. Science, N.Y. 207: 983–985

    Google Scholar 

  • Yentsch, C. S., Menzel, D. W. (1963). A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221–231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. W. Doyle, Halifax

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demers, S., Therriault, JC., Bourget, E. et al. Small-scale gradients of phytoplankton productivity in the littoral fringe. Mar. Biol. 100, 393–399 (1989). https://doi.org/10.1007/BF00391155

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391155

Keywords

Navigation