Skip to main content
Log in

Phytoplankton carbon dynamics during a winter-spring diatom bloom in an enclosed marine ecosystem: primary production, biomass and loss rates

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Phytoplankton production, standing crop, and loss processes (respiration, sedimentation, grazing by zooplankton, and excretion) were measured on a daily basis during the growth, dormancy and decline of a winter-spring diatom bloom in a large-scale (13 m3) marine mesocosm in 1987. Carbonspecific rates of production and biomass change were highly correlated whereas production and loss rates were unrelated over the experimental period when the significant changes in algal biomass characteristic of phytoplankton blooms were occurring. The observed decline in diatom growth rates was caused by nutrient limitation. Daily phytoplankton production rates calculated from the phytoplankton continuity equation were in excellent agreement with rates independently determined using standard 14C techniques. A carbon budget for the winter bloom indicated that 82.4% of the net daytime primary production was accounted for by measured loss processes, 1.3% was present as standing crop at the end of the experiment, and 16.3% was unexplained. Losses via sedimentation (44.8%) and nighttime phytoplankton respiration (24.1%) predominated, while losses due to zooplankton grazing (10.7%) and nighttime phytoplankton excretion (2.8%) were of lesser importance. A model simulating daily phytoplankton biomass was developed to demonstrate the relative importance of the individual loss processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Andersen, V., Nival, P. (1987). Modelling of a planktonic ecosystem in an enclosed water column. J. Marine Biology Ass. U.K. 67: 407–430

    Google Scholar 

  • APHA (American Public Health Association), American Water Works Association, and Water Pollution Control Federation. (1980). Standard methods for the examination of water and wastewater. American Public Health Association, New York

    Google Scholar 

  • Bathmann, U. V., Noji, T. T., Voss, M., Peinert, R. (1987). Copepod fecal pellets: abundance, sedimentation, and content at a permanent station in the Norwegian Sea in May/June 1986. Mar. Ecol. Prog. Ser. 38: 45–51

    Google Scholar 

  • Bell, W. H., Lang, J. M., Mitchell, R. (1974). Selective stimulation of marine bacteria by algal extracellular products. Limnol. Oceanogr. 19: 833–839

    Google Scholar 

  • Berman, T., Pollingher, U. (1974). Annual and seasonal variations of phytoplankton, chlorophyll and photosynthesis in Lake Kinneret. Limnol. Oceanogr. 19: 31–54

    Google Scholar 

  • Chrost, R. J., Faust, M. A. (1983). Organic carbon release by phytoplankton: its composition and utilization by bacterioplankton. J. Plankton Res. 5: 477–493

    Google Scholar 

  • Conover, R. J. (1966). Factors affecting the assimilation organic matter by zooplankton and the question of superfluous feeding. Limnol. Oceanogr. 11: 346–354

    Google Scholar 

  • Copping, A. E., Lorenzen, C. J. (1980). Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer. Limnol. Oceanogr. 25: 873–882

    Google Scholar 

  • Coveney, M. F., Cronberg, G., Enell, M., Larsson, K., Olofsson, L. (1977). Phytoplankton, zooplankton and bacteria-standing crop and production relationships in a eutrophic lake. Oikos 29: 5–21

    Google Scholar 

  • Deason, E. E. (1980). Grazing of Acartia hudsonica (A. clausi) on Skeletonema costatum in Narragansett Bay (USA): influence of food concentration and temperature. Marine Biology 60: 101–113

    Google Scholar 

  • Derenbach, J. B., Williams, P. J., le B. (1974). Autotrophic and bacterial production: fractionation of plankton populations by differential filtration of samples from the English Channel. Marine Biology 25: 263–269

    Google Scholar 

  • Down, J., Lorenzen, C. J. (1985). Carbon: pheopigment ratios of zooplankton fecal pellets as an index of herbivorous feeding. Limnol. Oceanogr. 30: 1024–1036

    Google Scholar 

  • Durbin, E. G., Kraweic, R. W., Smayda, T. J. (1975). Seasonal studies on the relative importance of different size fractions of phytoplankton in Narragansett Bay (USA). Marine Biology 32: 271–287

    Google Scholar 

  • Eppley, R. W., Reid, F. M. H., Strickland, J. D. H. (1970). Estimates of phytoplankton crop size, growth rate and primary production. Bull. Scripps Instn Oceanogr. 17: 33–42

    Google Scholar 

  • Falkowski, P. G., Flagg, C. N., Rowe, G. T., Smith, S. L., Whitledge, T. E., Wirick, C. D. (1988). The fate of a spring phytoplankton bloom: export or oxidation? Contin. Shelf Res. 8: 457–484

    Google Scholar 

  • Forsberg, B. R. (1985). The fate of planktonic primary production. Limnol. Oceanogr. 30: 807–819

    Google Scholar 

  • Graf, G., Bengtsson, W., Diesner, U., Schulz, R., Theede, H. (1982). Benthic response to sedimentation of a spring phytoplankton bloom: process and budget. Marine Biology 67: 201–208

    Google Scholar 

  • Hecky, R. E., Fee, E. J. (1981). Primary production and rates of algal growth in Lake Tanganyika. Limnol. Oceanogr. 26: 532–547

    Google Scholar 

  • Hellebust, J. A. (1974). Extracellular products. In: Stewart, W.D.P. (ed.) Algal physiology and biochemistry. Blackwell, Oxford, p. 838–863

    Google Scholar 

  • Hobson, L. A., Morris, W. J., Pirquet, K. T. (1976). Theoretical and experimental analysis of the 14C technique and its use in studies of primary production. J. Fish. Res. Bd Can. 33: 1715–1721

    Google Scholar 

  • Jassby, A. D., Goldman, C. R. (1974). Loss rates from a lake phytoplankton community. Limnol. Oceanogr. 19: 618–627

    Google Scholar 

  • Jensen, L. M. (1983). Phytoplankton release of extracellular organic carbon, molecular weight composition, and bacterial assimilation. Mar. Ecol. Prog. Ser. 11: 39–48

    Google Scholar 

  • Jewson, D. H., Rippley, B. H., Gilmore, W. K. (1981). Loss rates from sedimentation, parasitism, and grazing during the growth, nutrient limitation, and dormancy of a diatom crop. Limnol. Oceanogr. 26: 1045–1056

    Google Scholar 

  • Karentz, D., Smayda, T. J. (1984). Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959–1980). Mar. Ecol. Prog. Ser. 18: 277–293

    Google Scholar 

  • Keller, A. A. (1986). Modeling the productivity of natural phytoplankton populations using mesocosm data along a nutrient gradient. Ph.D. thesis, University of Rhode Island

  • Keller, A. A. (1988). An empirical model of primary productivity (14C) using mesocosm data along a nutrient gradient. J Plankton Res. 10: 813–834

    Google Scholar 

  • Knoechel, R. (1977). Analyzing the significance of grazing in Lake Erken. Limnol. Oceanogr. 22: 967–969

    Google Scholar 

  • Kovala, T. E., Larrance, J. D. (1966). Computation of phytoplankton cell numbers cell volume, cell surface, and volume per liter from microscopical counts. Spec. Rept. No. 38, University of Washington. Dept. Oceanogr. M 66-1

  • Lancelot, C. (1979). Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the southern North Sea, as determined by short-term kinetics. Mar. Ecol. Prog. Ser. 1: 179–186

    Google Scholar 

  • Laws, E. A., Archie, J. W. (1981). Appropriate use of regression analysis in marine biology. Marine Biology 65: 13–16

    Google Scholar 

  • Laws, E. A., Bannister, T. T. (1980). Nutrient and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25: 457–473

    Google Scholar 

  • Laws, E. A., Bienfang, P. K., Zieman, D. A., Conquest, L. D. (1988). Phytoplankton population dynamics and the fate of production during the spring bloom in Auke Bay, Alaska. Limnol. Oceanogr. 33: 57–65

    Google Scholar 

  • Lewis, W. M. (1974). Primary production in the plankton community of a tropical lake. Ecol. Monogr. 44: 377–409

    Google Scholar 

  • Malone, T. C. (1971). The relative importance of nanoplankton and netplankton as primary producers in the California Current system. Fish. Bull. U.S. 69: 799–820

    Google Scholar 

  • McAllister, C. D., Shah, D., Strickland, J. D. H. (1964). Marine phytoplankton photosynthesis as a function of light intensity: a comparison of methods. J. Fish. Res. Bd Can. 21: 159–181

    Google Scholar 

  • McCarthy, J. J., Goldman, J. C. (1979). Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science, N.Y. 203: 670–672

    Google Scholar 

  • McLaughlin, J. J. A., Kleppel, G. S., Brown, M. P., Ingram, R. J., Samuels, M. B. (1982). The importance of nutrients to phytoplankton production in New York Harbor. In: Meyer, G. F. (ed.) Ecological stress and the New York Bight: science and management. Estuarine Research Federation. Columbia, South Carolina, p. 469–479

    Google Scholar 

  • Munk, W. H., Riley, G. A. (1952). Absorption of nutrients by aquatic plants. J. mar. Res. 11: 215–240

    Google Scholar 

  • Nalewajko, C., Dunstall, T. G., Shear, H. (1976). Kinetics of extracellular release in axenic algae and in mixed algal-bacterial cultures: significance in estimation of total (gross) phytoplankton excretion rates. J. Phycol. 12: 1–5

    Google Scholar 

  • Oviatt, C. A., Keller, A. A., Sampou, P. A., Beatty, L. L. (1986a). Patterns of productivity during eutrophication: a mesocosm experiment. Mar. Ecol. Prog. Ser. 28: 69–80

    Google Scholar 

  • Oviatt, C. A., Rudnick, D. T., Keller, A. A., Sampou, P. A., Almquist, G. T. (1986 b). A comparison of system (O2 and CO2) and C-14 measurements of metabolism in estuarine mesocosms. Mar. Ecol. Prog. Ser. 28: 57–67

    Google Scholar 

  • Peinert, R., Saure, A., Stegman, P., Steinen, C., Haardt, H., Smetacek, V. (1982). Dynamics of primary production and sedimentation in a coastal ecosystem. Neth. J. Sea Res. 16: 276–289

    Google Scholar 

  • Peterson, B. J. (1978). Radiocarbon uptake: its relation to net particulate production. Limnol. Oceanogr. 23: 179–184

    Google Scholar 

  • Peterson, B. J. (1980). Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem. A. Rev. Ecol. Syst. 11: 359–385

    Google Scholar 

  • Pilson, M. E. Q., Oviatt, C. A., Nixon, S. W. (1980). Annual nutrient cycles in a marine microcosm. In: Giesy, J. P. (ed.) Microcosms in Ecological Research. National Technical Information Service. Springfield, VA, p. 753–778

    Google Scholar 

  • Platt, T., Conover, R. J. (1971). Variability and its effect on the 24 h chlorophyll budget of a small marine basin. Marine Biology 10: 52–65

    Google Scholar 

  • Platt, T., Jassby, A. D. (1976). The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12: 421–430

    Google Scholar 

  • Reynolds, C. S., Morison, H. R., Butterwick, C. (1982a). The sedimentary flux of phytoplankton in the south basin of Windermere. Limnol. Oceanogr. 27: 1162–1175

    Google Scholar 

  • Reynolds, C. S., Thompson, J. M., Ferguson, A. J., Wiseman, S. W. (1982b). Loss processes in the population dynamics of phytoplankton in closed limnetic systems. J. Plankton Res. 4: 561–600

    Google Scholar 

  • Riebesell, U. (1988). Sinking and sedimentation of a diatom winter/spring bloom, M. S. thesis,University of Rhode Island Kingston, RI

    Google Scholar 

  • Rudnick, D. T., Oviatt, C. A. (1986). Seasonal lags between organic carbon deposition and mineralization in marine sediments. J. mar. Res. 44: 815–837

    Google Scholar 

  • Sharp, J. H. (1974). Improved analysis for “particulate” carbon and nitrogen from seawater. Limnol. Oceanogr. 19: 984–989

    Google Scholar 

  • Smayda, T. J. (1969). Some measurements of the sinking rate of fecal pellets. Limnol. Oceanogr. 14: 621–625

    Google Scholar 

  • Smayda, T. J. (1973). The growth of Skeletonema costatum during a winter-spring bloom in Narragansett Bay, Rhode Island. Norw. J. Bot. 20: 219–247

    Google Scholar 

  • Smetacek, V. (1980). Zooplankton standing stock, copepod fecal pellets and particulate detritus in Kiel Bight. Estuar. cstl mar. Sci. 11: 477–490

    Google Scholar 

  • Smetacek, V., Bodungen, B. von, Knoppers, B., Peinert, R., Pollehne, F., Stegmann, P., Zeitzschel, B. (1980). Seasonal stages characterizing the annual cycle of an inshore pelagic system. Rapp. P.-v. Réun. Cons perm. int. Explor. Mer 183: 126–135

    Google Scholar 

  • Smetacek, V., Brockel, K. von, Zeitzschel, B., Zenk, W. (1978). Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrological regime. Marine Biology 47: 211–226

    Google Scholar 

  • Smith, R. E. H. (1982). The estimation of phytoplankton production and excretion by carbon-14. Marine Biology Lett. 3: 325–334

    Google Scholar 

  • Smith, S. L., Lane, P. V. Z. (1988). Grazing of the spring diatom bloom in the New York Bight by the calanoid copepods Calanus finmarchicus, Metridia lucens and Centropages typicus. Contin. Shelf Res. 8: 485–509

    Google Scholar 

  • Sournia, A., Birrien, J.-L., Douville, J.-L., Klein, B., Viollier, M. (1987). A daily study of the diatom spring bloom at Roscoff (France) in 1985. I. The spring bloom within the annual cycle. Estuar. cstl Shelf Sci. 25: 355–367

    Google Scholar 

  • Steemann Nielsen, E. (1952). The use of radioactive carbon (C14) for measuring organic production in the sea. J. Cons. int. Explor. Mer 18: 117–140

    Google Scholar 

  • Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd Can.

  • Takamura, N., Yasuno, M. (1988). Sedimentation of phytoplankton populations dominated by Microcystis in a shallow lake. J. Plankton Res. 10: 283–299

    Google Scholar 

  • Tilzer, M. M. (1984). Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass change in Lake Constance. J. Plankton Res. 6: 309–324

    Google Scholar 

  • Trimbee, A. M., Harris, G. P. (1984). Phytoplankton population dynamics of a small reservoir: use of sedimentation traps to quantify the loss of diatoms and recruitment of summer bloomforming blue-green algae. J. Plankton Res. 6: 897–918

    Google Scholar 

  • Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Verein theor. angew. Limnol. 9: 1–38

    Google Scholar 

  • Vargo, G. A. (1976). The influence of grazing and nutrient excretion by zooplankton on the growth and production of the marine diatom, Skeletonema costatum (Greville) Cleve, in Narragansett Bay. Ph.D. thesis, University of Rhode Island Kingston, RI

    Google Scholar 

  • Verity, P. G. (1986). Grazing of phototrophic nanoplankton by microzooplankton in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 105–115

    Google Scholar 

  • Welschmeyer, N. A., Lorenzen, C. J. (1985). Chlorophyll budgets: Zooplankton growth in a temperate fjord and the Central Pacific gyres. Limnol. Oceanogr. 30: 1–21

    Google Scholar 

  • Williams, R. B. (1964). Division rates of salt marsh diatoms in relation to salinity and cell size. Ecology 45: 877–880

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, Woods Hole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, A.A., Riebesell, U. Phytoplankton carbon dynamics during a winter-spring diatom bloom in an enclosed marine ecosystem: primary production, biomass and loss rates. Marine Biology 103, 131–142 (1989). https://doi.org/10.1007/BF00391071

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391071

Keywords

Navigation