Skip to main content
Log in

Population structure and reproductive biology of two sympatric hydrothermal vent polychaetes, Paralvinella pandorae and P. palmiformis

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The alvinellid polychaetes Paralvinella pandorae Desbruyères and Laubier and P. palmiformis Desbruyères and Laubier occur at deep-sea hydrothermal vents along the Juan de Fuca and Explorer Ridges in the northeast Pacific Ocean. The population structure and reproductive biology of both species were studied in samples taken from three vent sites during six cruises in 1983 and 1984. Size-frequency analyses of two P. pandorae populations produced unimodal histograms, suggesting continuous or semi-continuous juvenile recruitment; in a third population two possible size classes were evident. Histograms of P. palmiformis displayed size-class peaks, which most likely reflected periodic recruitment of juveniles. Both species are gonochoric and gametes develop free in the coelom. Due to the simultaneous presence of a full range of gametogenic stages in P. pandorae populations, including spermatozoa in males, and to the continuous or semi-continuous recruitment pattern suggested by the size-frequency histograms, continuous reproduction is proposed for this species. In P. palmiformis a discrete, possibly synchronized, breeding cycle is thought to occur. Although maximum fecundity of P. pandorae is very low, continual reproduction over a long period of time could enhance its reproductive potential. The estimate of maximum fecundity for P. palmiformis is comparable to estimates for other polychaetes that undergo non-planktotrophic larval development. Maximum observed oocyte size was 215 and 260 μm in P. pandorae and P. palmiformis, respectively. It is proposed that P. pandorae broods its young, while P. palmiformis probably undergoes demersal lecithotrophic larval development. The continual production of brooded young by P. pandorae could maintain a vent population, but severely limit dispersal to other vents. Demersal lecithotrophic larvae of P. palmiformis could repopulate vents, and potentially be carried by bottom currents to other vent sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Barnes, H. (1956). Balanus balanoides in the Firth of Clyde, the development and annual variation of the larval population and the causative factors. J. Anim. Ecol. 25: 72–84

    Google Scholar 

  • Berg, C. J., Jr. (1985). Reproductive strategies of mollusks from abyssal hydrothermal vent communities. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 185–197. (Bull. biol. Soc. Wash. No. 6)

    Google Scholar 

  • Berg, C. J., Jr., Turner, R. D. (1980). Description of living specimens of Calyptogena magnifica Boss and Turner with notes on their distribution and ecology. Appendix 1. In: Boss, K. J., Turner, R. D. (eds.) The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum. Malacologia 20: 183–185

  • Billett, D. S. M., Hansen, B. (1982) Abyssal aggregations of Kolga hyalina D. and K. (Echinodermata: Holothuroidea) in the northeast Atlantic Ocean: a preliminary report. Deep-Sea Res. 29: 799–818

    Google Scholar 

  • Bouchet, P., Fontes, J.-C. (1981). Migrations verticales des larves de Gastéropodes abyssaux: arguments nouveaux dûl à l'analyse isotopique de la coquille larvaire et post larvaire. C. r. hebd. Séanc. Acad Sci., Paris (sér. 3) 292: 1005–1008

    Google Scholar 

  • Burke, R. D. (1983). The induction of metamorphosis of marine invertebrate larvae: stimulus and response. Can. J. Zool. 61: 1701–1719

    Google Scholar 

  • Cassie, R. M. (1954). Some uses of probability paper in the analysis of size-frequency distributions. Aust. J. mar. Freshwat. Res. 5: 513–525

    Google Scholar 

  • Cavanaugh, C. M. (1980). Symbiosis of chemoautotrophic bacteria and marine invertebrates. Biol. Bull. Marine Biology Lab., Woods Hole 159: p. 457 (Abstract)

    Google Scholar 

  • Cavanaugh, C. M. (1983). Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature, Lond. 302: 58–61

    Google Scholar 

  • Cavanaugh, C. M. (1985). Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 373–388. (Bull. biol. Soc. Wash. No. 6)

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury, J. B. (1981). Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213: 340–342

    Google Scholar 

  • Cazaux, C. (1982). Developpement larvaire de l'ampharetidae lagunaire Alkmaria romijni Horst 1919. Cah. Biol. mar. 23: 143–157

    Google Scholar 

  • Cerrato, R. M. (1980). Demographic analysis of bivalve populations. In: Rhoads, D. C., Lutz R. A. (eds.) Skeletal growth of aquatic organisms. Plenum Press, New York, p. 417–465

    Google Scholar 

  • Chia, F. S., Rice, M. E. (eds.) (1978) Settlement and metamorphosis of marine invertebrate larvae. Elsevier North Holland, New York, p. 1–290

    Google Scholar 

  • Christie, G. (1986). Observations on the reproductive biology of Trichobranchus glacialis Malmgren, 1886 (Polychaeta: Trichobranchidae). Sarsia 71: 259–265

    Google Scholar 

  • Clark, R. B. (1979). Environmental determination of reproduction in polychaetes. In: Stancyk, S. E. (ed.) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, S.C., p. 107–123

    Google Scholar 

  • Clavier, J. (1984). Description du cycle biologique d' Ampharete acutifrons (Grube, 1860) (Annélide Polychète). C. r. hebd. Séanc. Acad Sci., Paris (sér. 3) 299: 59–62

    Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Von Herzen, R. P., Ballard, R. D., Green, K., van Andel, T. H. (1979). Submarine thermal springs on the Galapagos Rift. Science, N.Y. 203: 1073–1983

    Google Scholar 

  • Cuomo, M. C. (1985). Sulfide as a larval settlement cue for Capitella sp. 1. Biogeochemistry (Dordrecht) 1: 169–181

    Google Scholar 

  • Curtis, M. A., (1977). Life cycles and population dynamics of marine benthic polychaetes from the Disko Bay area of West Greenland. Ophelia 16: 9–58

    Google Scholar 

  • Desbruères, D., Gaill, F., Laubier, L, Fouquet, Y. (1985). Polychaetous annelids from hydrothermal vent ecosystems: an overview. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 103–116. (Bull. biol. Soc. Wash. No. 6)

    Google Scholar 

  • Desbruyères, D., Laubier, L. (1983). Primary consumers from hydrothermal vents animal communities. In: Rona, P. A., Boström, K., Laubier, L., Smith, K. L. (eds.) Hydrothermal processes at seafloor spreading centers. Plenum Press, New York, p. 711–734

    Google Scholar 

  • Desbruyères, D., Laubier, L. (1986). Les Alvinellidae, une famille nouvelle d'annélides polychètes inféodées aux sources hydrothermales sous-marins: systématiques, biologie et écologie. Can. J. Zool. 64: 2227–2245

    Google Scholar 

  • Dubilier, D. (1986). The role of sulfide in the settlement of Capitella sp. 1 larvae. Biol. Bull. Marine Biology Lab., Woods Hole 171: p. 497 (Abstract)

    Google Scholar 

  • Eckelbarger, K. J. (1974). Population biology and larval development of the terebellid polychaete Nicolea zostericola. Marine Biology 27: 101–113

    Google Scholar 

  • Fauchald, K., Jumars, P. A. (1977). Between community contrasts in successful polychaete feeding strategies. In: Coull, B. C. (ed.) Ecology of marine benthos. Georgetown, University of Carolina Press, p. 1–20

    Google Scholar 

  • Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science, N.Y. 213: 336–338

    Google Scholar 

  • Felbeck, H., Childress, J. J., Somero, G. N. (1981). Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphiderich habitats. Nature, Lond. 293: 291–293

    Google Scholar 

  • Fretter, V., Graham, A., McLean, J. H. (1981). The anatomy of the Galapagos Rift limpet, Neomphalus fretterae. Malacologia 21: 337–361

    Google Scholar 

  • Gibbs, P. E. (1971). A comparative study of reproductive cycles in four polychaete species belonging to the family Cirratulidae. J. Marine Biology Ass. U.K. 51: 745–769

    Google Scholar 

  • Grassle, J. F., Grassle, J. P. (1974). Opportunistic life histories and genetic systems in marine benthic polychaetes. J. mar. Res. 32: 253–284

    Google Scholar 

  • Gremare, A., Olive, P. W. (1986). A preliminary study of fecundity and reproductive effort in two polychaetous annelids with contrasting reproductive strategies. Int. J. Invertebrate Reprod. Dev. (Amsterdam) 9: 1–16

    Google Scholar 

  • Guillou, M., Hily, C. (1983). Dynamics and biological cycle of a Melinna palmata (Ampharetidae) population during the recolonization of a dredged area in the vicinity of the harbour of Brest (France). Marine Biology 73: 43–50

    Google Scholar 

  • Heffernan, P., O'Connor, B., Keegan, B. F. (1983). Population dynamics and reproductive cycle of Pholoë minuta (Polychaeta: Sigalionidae) in Galway Bay. Marine Biology 73: 285–291

    Google Scholar 

  • Hermans, C. O. (1979). Polychaete egg sizes, life histories and phylogeny. In: Stancyk, S. E. (ed.) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, S.C., p. 1–11

    Google Scholar 

  • Hessler, R. R., Smithey, W. M., Jr., Keller, C. H. (1985). Spatial and temporal variation of giant clams, tube worms and mussels at deep-sea hydrothermal vents. In: Jones, M. I. (ed.) Hydrothermal vents of the eastern pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 411–428. (Bull. biol. Soc. Wash. No. 6)

    Google Scholar 

  • Hutchings, P. A. (1973). Gametogenesis in a Northumberland population of the polychaete Melinna cristata. Marine Biology 18: 199–211

    Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. (1979). Chemosynthetic primary production at East Pacific sea floor spreading centers. BioSci. 29: 592–598

    Google Scholar 

  • Lalou, C., Brichet, E. (1981). Possibilités de datation des dépôts de sulfures métalliques hydrothermaux sous-marins par les descendants à vie courte de l'uranium et du thorium. C. r. hebd. Séanc. Acad Sci., Paris (sér. 3) 293: 821–824

    Google Scholar 

  • Lalou, C., Brichet, E., Hekinian, R. (1985). Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12°50′N. Earth planet. Sci. Lett. 75 (1): 59–71

    Google Scholar 

  • LePennec, M., Hily, A., Lucas, A. (1984). Gonadiques particulières d'un mytilidae profund des sources hydrothermales du Pacifique oriental. C. r. hebd. Séanc. Acad Sci., Paris (sér. 3) 299: 725–730

    Google Scholar 

  • Lewis, J. R., Bowman, R. S. (1975). Local habitat-induced variations in the population dynamics of Patella vulgata. L. J. exp. Marine Biology Ecol. 17: 165–203

    Google Scholar 

  • Lutz, R. A., Jablonski, D., Rhoads, D. C. Turner, R. D. (1980). Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galápagos Rift. Marine Biology 57: 127–133

    Google Scholar 

  • Lutz, R. A., Jablonski, D., Turner, R. D. (1984). Larval development and dispersal at deep-sea hydrothermal vents. Science, N.Y. 226: 1451–1454

    Google Scholar 

  • MacDonald, K. C., Becker, K., Speiss, F. N., Ballard, R. D. (1980). Hydrothermal heat flux of the ‘black smoker’ vents on the East Pacific Rise. Earth planet. Sci. Lett. 48: 1–7

    Google Scholar 

  • Marinescu, V. P. (1964). La reproduction et la développement des polychètes reliques Ponto-Caspiens du Danube: Hypaniola kowalewskii (Grimm) et Manayunkia caspica. Revue roum. Biol. (série Zool.) 9: 87–100

    Google Scholar 

  • McHugh, D. (1987). The life-history patterns of two hydrothermal vent polychaetes, Paralvinella pandorae Desbruyères and Laubier and Paralvinella palmiformis Desbruyères and Laubier. M. Sc. thesis, University of Victoria

  • McLean, J. (1981). The Galapagos Rift limpet Neomphalus: relevance to understanding the evolution of a major Poleozoic-Mesozoic radiation. Malacologia 21: 291–336

    Google Scholar 

  • Nyholm, K.-G. (1951). Contributions to the life-history of the ampharetid, Melinna cristata. Zool. Bidr. Upps. 29: 79–93

    Google Scholar 

  • Okuda, S. (1937). On an ampharetid worm, Schistocomus sovjeticus Annenkova, with some notes on its larval development. J. Fac. Sci. Hokkaido imp. Univ. 9: 321–329

    Google Scholar 

  • Olive, P. J. W. (1970). Reproduction of a Northumberland population of the polychaete Cirratulus cirratus. Marine Biology 5: 259–273

    Google Scholar 

  • Olive, P. J. W. (1977). The life-history and population structure of the polychaetes Nephtys caeca and Nephtys hombergii, with special reference to the growth rings in the teeth. J. Marine Biology Ass. U.K. 57: 133–150

    Google Scholar 

  • Olive, P. J. W. (1984). Environmental control of reproduction in Polychaeta. In: Fischer, A., Pfannenstiel, H.-D. (eds.) Polychaete reproduction, progress in comparative reproductive biology. Gustav Fischer Verlag, Stuttagrt, New York, p. 17–39. (Fortschr. Zool. 29)

    Google Scholar 

  • Pearson, M., Gage, J. D. (1984). Diets of some deep-sea brittle stars in the Rockall Trough. Marine Biology 82: 247–258

    Google Scholar 

  • Pechenik, J. A. (1984a). The relationship between temperature, growth rate, and duration of planktonic life for larvae of the gastropod Crepidula fornicata (L.). J. exp. Marine Biology Ecol. 74: 241–257

    Google Scholar 

  • Pechenik, J. A. (1984b). Influence of temperature and temperature shifts on the development of chiton larvae, Mopalia muscosa. Int. J. Invertebrate Reprod. Dev. (Amsterdam) 7: 3–12

    Google Scholar 

  • Rokop, F. J. (1974). Reproductive patterns in the deep-sea benthos. Science, N.Y. 186: 743–745

    Google Scholar 

  • Rokop, F. J. (1977). Seasonal reproduction of the brachiopod Frieleia halli and the scaphopod Cadulus californicus at bathyal depths in the deep sea. Marine Biology 43: 237–246

    Google Scholar 

  • SAS Institute Inc. (1985). SAS/GRAPH® user's guide: basics. Version 5. SAS Institute Inc. Cary, North Carolina

    Google Scholar 

  • Scheltema, R. S. (1977). Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications. In: Kauffman, E. G., Hazel, J. E. (eds.) Concepts and methods of biostratigraphy. Dowden, Hutchinson & Ross, Stroudsberg, Pennsylvania, p. 73–108

    Google Scholar 

  • Southward, A. J. (1967). Recent changes in abundance of intertidal barnacles in southwest England: a possible effect of climatic deterioration. J. Marine Biology Ass. U.K. 47: 81–95

    Google Scholar 

  • Southward, A. J., Crisp, D. J. (1956). Fluctuations in the distribution and abundance of intertidal barnacles. J. Marine Biology Ass. U.K. 35: 211–230

    Google Scholar 

  • Southward, E. C., Southward, A. J. (1958). The breeding of Arenicola ecaudata Johnston and A. branchialis Aud. and Edw. at Plymouth. J. Marine Biology Ass. U.K. 37: 267–286

    Google Scholar 

  • Stearns, S. C. (1976). Life-history tactics: a review of the ideas. Q. Rev. Biol. 51: 3–47

    Google Scholar 

  • Strathmann, R. R. (1978). The evolution and loss of feeding larval stages in marine invertebrates. Evolution, Lawrence, Kansas 32: 894–906

    Google Scholar 

  • Strathmann, R. R. (1985). Feeding and non-feeding larval development and life-history evolution in marine invertebrates. A. Rev. Ecol. Syst. 16: 339–361

    Google Scholar 

  • Strathmann, R. R., Vedder, K. (1977). Size and organic content of eggs of echinoderms and other invertebrates as related to developmental strategies and egg eating. Marine Biology 39: 305–309

    Google Scholar 

  • Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25: 1–45

    Google Scholar 

  • Tunnicliffe, V. (1988). Biogeography and evolution of hydrothermal-vent fauna in the eastern Pacific Ocean. Proc. R. Soc. (Ser. B) 233: 347–366

    Google Scholar 

  • Tunnicliffe, V., Fontaine, A. R. (1987). Faunal composition and organic surface encrustations at hydrothermal vents on the southern Juan de Fuca Ridge. J. geophys. Res. 92: 11303–11314

    Google Scholar 

  • Tunnicliffe, V., Jensen, R. G. (1987). Distribution and behaviour of the spider crab Macroregonia macrochira Sakai (Brachyura) around the hydrothermal vents of the northeast Pacific. Can. J. Zool. 65: 2442–2449

    Google Scholar 

  • Tunnicliffer, V., Juniper, S. K., de Burgh, M. E. (1985). The hydrothermal vent community on Axial Seamount, Juan de Fuca Ridge. In: Jones, M. L. (ed.) Hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 453–464. (Bull. biol. Soc. Wash. No. 6)

    Google Scholar 

  • Turner, R. D. (1965). Some results on deep-water testing. A. Rep. Am. malac. Un. 17: 9–11

    Google Scholar 

  • Turner, R. D. (1981). Wood islands' and ‘thermal vents’ as centers of diverse communities in the deep-sea. Biol. Morya, Kiev 7: 3–10

    Google Scholar 

  • Turner, R. D., Lutz, R. A., Jablonski, D. (1985). Modes of molluscan larval development at deep-sea hydrothermal vents. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 167–184. (Bull. biol. Soc. Wash. No. 6)

    Google Scholar 

  • Tyler, P. A., Gage, J. D. (1980). Reproduction and growth in the deep-sea brittlestar Ophiura ljungmani (Lyman). Oceanol. Acta 3: 177–185

    Google Scholar 

  • Tyler, P. A., Gage, J. D. (1984a). Seasonal reproduction of Echinus affinis in the Rockall Trough, northeast Atlantic Ocean. Deep-Sea Res. 31: 387–402

    Google Scholar 

  • Tyler, P. A., Gage, J. D. (1984b). The reproductive biology of echinothuriid and cidarid sea urchins from the deep sea (Rockall Trough, North-East Atlantic Ocean). Marine Biology 80: 63–74

    Google Scholar 

  • Tyler, P. A., Gage, J. D., Billett, D. S. M.: (1985). Life-history biology of Peniagone azorica and P. diaphana (Echinodermata: Holothuroidea) from the north-east Atlantic Ocean. Marine Biology 89: 71–81

    Google Scholar 

  • Tyler, P. A., Pain, S. L., Gage, J. D., Billett, D. S. M. (1984). The reproductive biology of deep-sea forcipulate seastars (Asteroidea: Echinodermata) from the N. E. Atlantic Ocean, J. Marine Biology Ass. U.K. 64: 587–601

    Google Scholar 

  • Valderhaug, V. A. (1985). Population structure and production of Lumbrineris fragilis (Polychaeta: Lumbrineridae) in the Oslofjord (Norway) with a note on metal content of jaws. Marine Biology 86: 203–211

    Google Scholar 

  • Van Dover, C. L., Factor, J. R., Williams, A. B., Berg, C. J. (1985). Reproductive patterns of decapod crustaceans from hydrothermal vents. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 223–227. (Bull. biol. Soc. Wash. No. 6)

    Google Scholar 

  • Van Praët, M., Duchateau, G. (1984). Mise en évidence chez une actinie abyssale (Paracalliactis stephensoni) d'un cycle saisonnier de reproduction. C. r. hebd. Séanc. Acad Sci., Paris (sér.) 299: 687–690

    Google Scholar 

  • Warwick, R. M., Georges, C. L., Davies, J. R. (1978). Annual macrofauna production in a Venus community. Estuar. cstl mar. Sci. 7: 215–241

    Google Scholar 

  • Zottoli, R. A. (1974). Reproduction and larval development of the ampharetid polychaete Amphicteis floridus. Trans. Am. microsc. Soc. 93 (1): 78–89

    Google Scholar 

  • Zottoli, R. A. (1983). Amphisamytha galapagensis, a new species of ampharetid polychaete from the vincinity of abyssal hydrothermal vents in the Galapagos Rift, and the role of this species in rift ecosystems. Proc. biol. Soc. Wash. 96: 379–391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. C. Schroeder, Pullman

Rights and permissions

Reprints and permissions

About this article

Cite this article

McHugh, D. Population structure and reproductive biology of two sympatric hydrothermal vent polychaetes, Paralvinella pandorae and P. palmiformis . Marine Biology 103, 95–106 (1989). https://doi.org/10.1007/BF00391068

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391068

Keywords

Navigation