Advertisement

Marine Biology

, Volume 56, Issue 1, pp 49–57 | Cite as

Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns

  • K. R. King
  • J. T. Hollibaugh
  • F. Azam
Article

Abstract

The larvacean Oikopleura dioica Fol was fed 3H-labeled natural assemblages of marine bacterioplankton. Grazing rates ranged from <1 to >100 ml day-1 individual-1 and were highly dependent onlarvacean body size. These rates were combined with estimates of abundance of O. dioica in large floating enclosures with semi-natural populations (Controlled Ecosystems Populations Experiment, CEPEX) to determine the impact of the larvacean on the bacterial populations and to estimate the amount of bacteria ingested by the larvaceans. Apparently, O. dioica has minimal influence on the population dynamics of the free-living bacteria, although bacteria may form a substantial portion of the larvacean's diet.

Keywords

Body Size Water Column Population Dynamic Bacterial Population Substantial Portion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alldredge, A. L.: Abandoned larvacean houses: a unique food source in the pelagic environment. Science, N.Y. 177, 885–887 (1972)Google Scholar
  2. Alldredge, A. L.: Discarded appendicularian houses as sources of food, surface habitats, and particulate organic matter in planktonic environments. Limnol. Oceanogr. 21, 14–23 (1976)Google Scholar
  3. Azam, F. and R. E. Hodson: Size distribution and activity of marine microheterotrophs. Limnol. Oceanogr. 22, 492–501 (1977)Google Scholar
  4. Corkett, C. J. and I. A. McLaren: The biology of Pseudocalanus. Adv. mar. Biol. 15, 1–231 (1978)Google Scholar
  5. Fager, E. W.: Estimation of mortality coefficients from field samples of zooplankton. Limnol. Oceanogr. 18, 297–301 (1973)Google Scholar
  6. Fernández, F.: Nutrition studies in the nauplius larva of Calanus pacificus (Copepoda: Calanoida). Mar. Biol. 53, 131–147 (1979)Google Scholar
  7. Flood, P. R.: Filter characteristics of appendicularian food catching nets. Experientia 34, 173–175 (1978)Google Scholar
  8. Gophen, M., B. Z. Cavari and T. Berman: Zooplankton feeding on differentially labelled algae and bacteria. Nature, Lond. 247, 393–394 (1974)Google Scholar
  9. Grice, G. D., R. P. Harris, M. R. Reeve, J. F. Heinbokel and C. O. Davis: Large-scale enclosed water-column ecosystems: an overview of Foodweb I, the final CEPEX experiment. J. mar. biol. Ass. U. K. (In press)Google Scholar
  10. Haas, L. W. and K. L. Webb: Nutritional mode of several non-pigmented microflagellates from the York River estuary, Virginia. J. exp. mar. Biol. Ecol. 39, 125–134 (1979)CrossRefGoogle Scholar
  11. Harbison, G. R. and V. L. McAlister: The filter-feeding rates and particle retention efficiencies of three species of Cyclosalpa (Tunicata, Thaliacea). Limnol. Oceanogr. 24, 875–892 (1979)Google Scholar
  12. Heinbokel, J. F. and J. R. Beers: Studies on the functional role of tintinnids in the Southern California Bight. III. Grazing impact of natural assemblages. Mar. Biol. 52, 23–32 (1979)Google Scholar
  13. Hemmingsen, A. M.: Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep. Steno meml Hosp. 9, 1–110 (1960)Google Scholar
  14. Hobbie, J. E., R. J. Daley and S. Jasper: Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envirl Microbiol. 33, 1225–1228 (1977)Google Scholar
  15. Hollibaugh, J. T., J. A. Fuhrman and F. Azam: A technique to radioactively label natural assemblages of bacterioplankton for use in trophic studies. Limnol. Oceanogr. 25, 172–181 (1980)Google Scholar
  16. Lampert, W.: A method for determining food selection by zooplankton. Limnol. Oceanogr. 19, 995–998 (1974)Google Scholar
  17. Lohmann, H.: Das Gehäuse der Appendicularien, sein Bau, seine Funktion und seine Entstehung. Schr. naturw. Ver. Schles.-Holst. 11, 347–406 (1899)Google Scholar
  18. Manzer, J. I.: Stomach contents of juvenile Pacific salmon in Chatham Sound and adjacent waters. J. Fish. Res. Bd Can. 26, 2219–2223 (1969)Google Scholar
  19. Menzel, D. W. and J. Case: Concept and design: controlled ecosystem pollution experiment. Bull. mar. Sci. 27, 1–7 (1977)Google Scholar
  20. Meyer-Reil, L.-A.: Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Appl. envirl Microbiol. 36, 506–512 (1978)Google Scholar
  21. Nival, P. et S. Nival: Efficacité de filtration des copépodes planctoniques. Annls Inst. oceanogr, Paris (N.S.) 49, 135–144 (1973)Google Scholar
  22. Nival, P. et S. Nival: Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodite stages); effects on grazing. Limnol. Oceanogr. 21, 24–38 (1976)Google Scholar
  23. Novitsky, J. A. and R. Y. Morita: Survival of a psychrophilic marine vibrio under long term nutrient starvation. Appl. envirl Microbiol. 33, 635–641 (1977)Google Scholar
  24. Paffenhöfer, G.-A.: The cultivation of an appendicularian through numerous generations. Mar. Biol. 22, 183–185 (1973)Google Scholar
  25. Paffenhöfer, G.-A.: On the biology of Appendicularia of the southern North Sea. Proc. 10th Eur. Symp. mar. Biol. 2, 437–455 (1976). (Ed. by G. Persoone and E. Jaspers. Wetteren, Belgium: Universa Press)Google Scholar
  26. Pavlova, E. V., T. S. Petipa and Yu. I. Sorokin: Role of bacterioplankton in the nutrition of marine planktonic animals. In: Life activity of pelagic communities in the tropical regions of the ocean, pp 142–151. Ed. by M. E. Vinogradov. Moscow: Nauka 1971. [Transl. from Russian by Israel Program for Scientific Translations, 1973]Google Scholar
  27. Peterson, B. J., J. E. Hobbie and J. F. Haney: Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23, 1039–1044 (1978)Google Scholar
  28. Postgate, J. R. and J. R. Hunter: The survival of starved bacteria. J. appl. Bact. 20, 295–300 (1963)Google Scholar
  29. Seki, H.: Red tide of Oikopleura in Saanich Inlet. La Mer (Bull. Soc. franco-jap. Océanogr.) 11, 153–158 (1973)Google Scholar
  30. Sharp, J. H.: Improved analysis for “particulate” organic carbon and nitrogen from seawater. Limnol. Oceanogr. 19, 984–989 (1974)Google Scholar
  31. Shelbourne, J. E.: A predator-prey size relationship for plaice larvae feeding on Oikopleura. J. mar. biol. Ass. U.K. 42, 243–252 (1962)Google Scholar
  32. Sorokin, Yu. I.: Decomposition of organic matter and nutrient regeneration. In: Marine ecology, Vol. 4. pp 501–616. Ed. by O. Kinne. Chichester: Wiley 1978Google Scholar
  33. Spittler, P.: Feeding experiments with tintinnids. Oikos (Suppl.) 15, 128–132 (1973)Google Scholar
  34. Stevenson, L. H.: A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4, 127–133 (1978)Google Scholar
  35. Strathmann, R. R.: The feeding behavior of planktotrophic echinoderm larvae: mechanisms, regulation, and rates of suspension feeding, J. exp. mar. Biol. Ecol. 6, 109–160 (1971)Google Scholar
  36. Watson, S. W., T. J. Novitsky, H. L. Quinby and F. W. Valois: Determination of bacterial number and biomass in the marine environment. Appl. envirl Microbiol. 33, 940–946 (1977)Google Scholar
  37. Wright, R. T.: Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl. envirl Microbiol. 36, 297–305 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • K. R. King
    • 1
    • 2
  • J. T. Hollibaugh
    • 3
  • F. Azam
    • 3
  1. 1.Department of OceanographyUniversity of WashingtonSeattleUSA
  2. 2.Friday Harbor LaboratoriesUniversity of WashingtonSeattleUSA
  3. 3.Institute of Marine Resources, A-018, Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations