Skip to main content
Log in

NADP+-isocitrat-dehydrogenase aus Idus idus (Pisces: Cyprinidae). II. Einfluß der temperatur auf substrat- und cosubstrataffinität

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Maximum substrate and cosubstrate affinity, as judged by the Michaelis constant (K M ), of NADP+-dependent isocitrate dehydrogenase of pig heart (purchased from Boehringer, Mannheim, FRG) is attained at 37°C. If K M -values of substrate (Isocitrate, IC) and cosubstrate (NADP+) of NADP+-dependent isocitrate dehydrogenase (ICDH) of the white dorsal muscle of Idus idus L. is plotted against the experimental temperature (VT), W-shaped curves result. With increasing adaptation temperature (AT), there is a shift to increasing VT. It is suggested that the W-shaped curves are due either to the simultaneous presence of two multiple forms of the enzyme, or to the reversible temperature-dependent interconversion of one protein species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Zitierte Literatur

  • Aleksiuk, M.: An isoenzymic basis for instantaneous cold compensation in reptiles: lactate dehydrogenase kinetics in Thamnophis sirtalis. Comp. Biochem. Physiol. 40 (B), 671–681 (1971)

    Google Scholar 

  • Baldwin, J. and P. W. Hochachka: Functional significance of isoenzymes in thermal acclimation. Acetylcholinesterase from trout brain. Biochem. J. 116, 883–887 (1970).

    PubMed  Google Scholar 

  • Behrisch, H. W.: Molecular mechanisms of adaptation to low temperature in marine poikilotherms. Some regulatory properties of dehydrogenases from two aretic species. Mar. Biol. 13, 267–275 (1972).

    Google Scholar 

  • Bergmeyer, H. U., G. Holz, E. M. Kauder, H. Möllering und O. Wieland: Kristallisierte Glycerokinase aus Candida mycoderma. Biochem. Z. 333, 471–480 (1961).

    Google Scholar 

  • Cowey, C. B.: Comparative studies on the activity of D-glyceraldehyde-3-phosphate dehydrogenase from cold and warmblooded animals with respect to temperature. Comp. Biochem. Physiol. 23, 969–976 (1967).

    Article  PubMed  Google Scholar 

  • Di Jeso, F.: Ammonium sulfate concentration conversion nomograph for 0°. J. biol. Chem. 243, 2022–2023 (1968).

    PubMed  Google Scholar 

  • Dixon, M.: A nomogramm for ammonium sulphate solutions. Biochem J. 54, 457–458 (1953).

    PubMed  Google Scholar 

  • Drost-Hansen, W.: Structure and properties of water at biological interfaces. In: Chemistry of the cell interface, Part B, pp 75–83 and 129–133. Ed. by H. D. Brown. New York, London: Academic Press 1971.

    Google Scholar 

  • Havsteen, B.: NADP+ Isocitrate dehydrogenase from Idus idus (Pisces: Cyprinidae). III. Discussion of temperature dependence of kinetic parameters. (In preparation).

  • Hochachka, P. W. and G. N. Somero: The adaptation of enzymes to temperature. Comp. Biochem. Physiol. 27, 659–668 (1968).

    Article  PubMed  Google Scholar 

  • ——: Adaptations to the environment. In: Fish physiology, pp 100–155. Ed. by W. S. Hoar and D. J. Randall. New York: Academic Press 1971.

    Google Scholar 

  • Iwatsuki, N. and R. Okazaki: Mechanisms of regulation of deoxythymidine kinase of Escherichia coli. II. Effect of temperature on the enzyme activity and kinetics. J. molec. Biol. 29, 155–165 (1967).

    PubMed  Google Scholar 

  • Kaplan, N. A.: Evolution of dehydrogenases. In: Evolving genes and proteins, pp 273–275. Ed., by V. Bryson and H. J. Vogel. New York: Academic Press 1965.

    Google Scholar 

  • Koster, I. F. and C. Veeger: The relation between temperature inducible allosteric effects and the activation energies of amino-acid oxidases. Biochim. biophys. Acta 167, 48–63 (1968).

    PubMed  Google Scholar 

  • Lehrer, G. M. and R. Barker: Conformational changes in rabbit muscle aldolase. Kinet. Stud. Biochem. 9, 1533–1539 (1970).

    Google Scholar 

  • Massey, V., B. Curti and H. Ganthers: A temperature-dependent conformational change in D-amino acid oxidase and its effect on catalysis. J. biol. Chem. 241, 2347–2357 (1966).

    PubMed  Google Scholar 

  • Moon, Th. W. and P. W. Hochachka: Effect of thermal acclimation on multiple forms of the liver-soluble NADP+-linked isocitrate dehydrogenase in the family Salmonidae. Comp. Biochem. Physiol. 40 (B), 207–213 (1971a).

    Google Scholar 

  • —— Temperature and enzyme activity in poikilotherms. Isocitrate dehydrogenases in rainbow-trout liver. Biochem. J. 123, 695–705 (1971b).

    PubMed  Google Scholar 

  • Newell, R. C.: The effect of temperature on the metabolism of poikilotherms. Nature, Lond. 212, 427–428 (1966).

    Google Scholar 

  • — Oxidative activity of poikilotherm mitochondria as a function of temperature. J. Zool. Lond. 151, 299–311 (1967).

    Google Scholar 

  • — and V. I. Pye: Temperature-induced variations in the respiration of mitochondria from the winkle, Littorina littorea (L.). Comp. Biochem. Physiol. 40 (B), 249–261 (1971).

    Article  Google Scholar 

  • Passia, D.: NADP+-Isocitrat-Dehydrogenase aus Idus idus (Pisces: Cyprinidae). I. Aktivität als Funktion der Adaptationstemperatur. Mar. Biol. 23, 197–204 (1973).

    Google Scholar 

  • Precht, H.: Über die Temperaturabhängigkeit von Lebensprozessen. Z. Naturf. (Sekt. B) 4, 26–31 (1949).

    Google Scholar 

  • — Der Einfluß «normaler» Temperaturen auf Lebensprozesse bei wechselwarmen Tieren unter Ausschluß der Wachstums- und Entwicklungsprozesse. Helgoländer wiss. Meeresunters. 18, 487–548 (1968).

    Google Scholar 

  • Precht, H., J. Christophersen, H. Hensel and W. Larcher (Ed.): Temperature and life, Heidelberg: Springer-Verlag. Im Druck.

  • Shiga, K. and T. Shiga: The kinetic features of monomers and dimers in high- and low-temperature conformational states of D-amino acid oxidases. Biochim. Biophys. Acta 263, 294–303 (1972).

    PubMed  Google Scholar 

  • Smith, M. W., V. E. Colombo and E. A. Munn: Influence of temperature acclimatization on the ionic activation of goldfish intestinal adenosine triphosphatase. Biochem. J. 107, 691–698 (1968).

    Google Scholar 

  • Somero, G. N.: Pyruvate kinase variants of the Alaskan king crab. Evidence for a temperature-dependent interconversion between two forms having distinct- and adaptivekinetic properties. Biochem. J. 114, 237–241 (1969).

    PubMed  Google Scholar 

  • — and P. W. Hochachka: The effect of temperature on catalytic and regulatory functions of pyruvate kinases of the rainbow trout and the Antarctic fish Trematomus bernachii. Biochem. J. 110, 395–400 (1968).

    PubMed  Google Scholar 

  • ——: Isoenzymes and short-term temperature compensation in poikilotherms: activation of lactate dehydrogenase isoenzymes by temperature decreases. Nature, Lond. 223, 194–195 (1969).

    Google Scholar 

  • Talsky, G.: Zur anomalen Temperaturabhängigkeit enzymkatalysierter Reaktionen. Angew. Chem. 15, 553–594 (1971).

    Google Scholar 

  • Wieland, Th. und G. Pfleiderer: Nachweis der Heterogenität von Milchsäure-Dehydrogenasen verschiedenen Ursprungs durch Trägerelektrophorese. Biochem. Z. 329, 112–116 (1957).

    PubMed  Google Scholar 

  • Wernick, A. und H. Künnemann: Der Einfluß der Temperatur auf die Substrat-Affinität der Laktat-Dehydrogenase aus Fischen. Mar. Biol. 18, 32–36 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Künnemann, H., Passia, D. NADP+-isocitrat-dehydrogenase aus Idus idus (Pisces: Cyprinidae). II. Einfluß der temperatur auf substrat- und cosubstrataffinität. Mar. Biol. 23, 205–211 (1973). https://doi.org/10.1007/BF00389486

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00389486

Navigation