Marine Biology

, Volume 26, Issue 3, pp 235–248 | Cite as

An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda

  • W. Wieser
  • J. Ott
  • F. Schiemer
  • E. Gnaiger


The dominant nematode and harpacticoid species inhabiting a sheltered beach at Bermuda were characterized by their vertical distribution in the sediment, by their tolerance of high temperature under oxic and anoxic conditions, and by their tolerance of extreme pH-values. In 4 species of nematodes the respiratory rate proved to be inversely proportional to the depth at which the species occurs, and directly proportional to the size of the buccal cavity. One species, the nematode Paramonhystera n.sp., is more temperature resistant at zero or near zero pO2 than at atmospheric oxygen pressure; it is the first marine metazoan in which it can be shown that a specific biological process is favourably affected by anoxic conditions if compared with the situation at normal pO2.


Oxygen Biological Process Beach Respiratory Rate Vertical Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alderdice, D.F.: Factor combinations: responses of marine poikilotherms to environmental factors acting in concert. In: Marine ecology. Vol. 1. Environmental factors, Pt 3. pp 1659–1722. Ed. by O. Kinne. London: Wiley Interscience 1972Google Scholar
  2. Atkinson, H.J.: The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). I. The influence of oxygen tension and size. J. exp. Biol. 59, 255–266 (1973a)Google Scholar
  3. —: The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). II. The effects of changes in the imposed oxygen regime. J. exp. Biol. 59, 267–274 (1973b)Google Scholar
  4. Ax, P.: Populationsdynamik, Lebenszyklen und Fortpflanzungsbiologie der Mikrofauna des Meeressandes. Verh. dt. zool. Ges. 1968, 66–113 (1969)Google Scholar
  5. Baas-Becking, L.G., I.R. Kaplan and D. Moore: Limits of the natural environment in terms of pH and oxidation-reduction potentials. J. Geol. 68, 243–284 (1960)Google Scholar
  6. Boaden, P.J.S.: Behaviour and distribution of the archiannelid Trilobodrilus heideri. J. mar. biol. Ass. U.K. 43, 239–250 (1963)Google Scholar
  7. — and H.M. Platt: Daily migration patterns in an intertidal meiobenthic community. Thalassia jugosl. 7, 1–12 (1971)Google Scholar
  8. Brandt, Th.v.: Parasitenphysiologie, 353 pp. Stuttgart: Gustav Fischer 1972Google Scholar
  9. Bruce, J.R.: Physical factors on the sandy beach. Part II. Chemical changes, carbon dioxide concentration and sulphides. J. mar. biol. Ass. U.K. 15, 553–565 (1928)Google Scholar
  10. Cooper, A.F. and S.D. Van Gundy: Metabolism of glycogen and neutral lipids by Aphelenchus avenae and Caenorhabditis sp. in aerobic, microaerobic and anaerobic environments. J. Nematol. 2, 305–315 (1970)Google Scholar
  11. Coull, B. and W.B. Vernberg: Harpacticoid copepod respiration: Enhydrosoma propinquum and Longipedia helgolandica. Mar. Biol. 5, 341–344 (1970)Google Scholar
  12. DeZio and P. Grimaldi: Ecological aspects of Tardigrada distribution in South Adriatic beaches. Veröff. Inst. Meeresforsch. Bremerh. (Sonderband) 2, 87–94 (1966)Google Scholar
  13. Ellenby, C. and L. Smith: Haemoglobin in Mermis subnigrescens (Cobb), Enoplus brevis (Bastian) and E. communis (Bastian). Comp. Biochem. Physiol. 19, 871–877 (1966)CrossRefGoogle Scholar
  14. Fairbairn, D.: Biochemical adaptation and loss of genetic capacity in helminth parasites. Biol. Rev. 45, 29–72 (1970)PubMedGoogle Scholar
  15. Fenchel, T.M.: The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special references to the ciliated protozoa. Ophelia 6, 1–182 (1969)Google Scholar
  16. —: The reduction-oxidation properties of marine sediments and the vertical distribution of the microfauna. Vie Milieu 22, 509–521 (1971)Google Scholar
  17. — and R.J. Riedl: The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7, 255–268 (1970)Google Scholar
  18. Fox, H.M. and A.E.R. Taylor: Tolerance of oxygen by aquatic invertebrates. Proc. R. Soc. (Ser. B) 143, 214–225 (1955)Google Scholar
  19. Fraenkel, G.: Resistance to high temperatures in a Mediterranean snail, Littorina neritoides. Ecology 42, 604–606 (1961)Google Scholar
  20. Giere, O.: Oxygen in the marine hygropsammal and the vertical microdistribution of oligochaetes. Mar. Biol. 21, 180–189 (1973)Google Scholar
  21. Gray, J.S.: The behaviour of Protodrilus symbioticus (Giard) in temperature gradients. J. Anim. Ecol. 34, 455–461 (1965)Google Scholar
  22. —: An experimental approach to the ecology of the harpacticid Leptastacus constrictus Lang. J. exp. mar. Biol. Ecol. 2, 278–292 (1968)CrossRefGoogle Scholar
  23. Hamilton, W.J.: Life's color code, 238 pp. New York: McGraw-Hill Book Co. 1973Google Scholar
  24. Hopper, B.E., J.W. Fell and R.F. Cefalu: Effect of temperature on life cycles of nematodes associated with the mangrove (Rhizophora mangle) detrital system. Mar. Biol. 23, 293–296 (1973)Google Scholar
  25. Jansson, B.-O.: Salinity resistance and salinity preference of two oligochaetes Aktedrilus monospermaticus Knöllner and Marionina preclitellochaeta n.sp. from the interstitial fauna of marine sandy beaches. Oikos 13, 293–305 (1962)Google Scholar
  26. —: Diurnal and annual variation of temperature and salinity of interstitial water in sandy beaches. Ophelia 4, 173–201 (1967)Google Scholar
  27. —: Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia 5, 1–71 (1968)Google Scholar
  28. —: Factors and fauna of a Baltic mud bottom. Limnoligica 7, 47–52 (1969)Google Scholar
  29. Kennedy, G.Y.: Pigments of Annelida, Echiuroidea, Sipunculoidea, Priapuloidea and Phoronidea. In: Chemical zoology, Vol. 4. pp 311–376. Ed. by M. Florkin and B.T. Scheer. New York: Academic Press 1969Google Scholar
  30. Kinne, O.: A programatic study of comparative biology of marine and brackish water animals. Année biol. 33, 87–92 (1957)Google Scholar
  31. —: Temperature: animals — invertebrates. In: Marine ecology. Vol. 1. Environmental factors, Pt 1. pp 407–514. Ed. by O. Kinne. London: Wiley Interscience 1970Google Scholar
  32. Lasker, R., J.B.J. Wells and A.D. McIntyre: Growth, reproduction, respiration and carbon utilization of the sand-dwelling harpacticoid copepod, Asellopsis intermedia. J. mar. biol. Ass. U.K. 50, 147–160 (1970)Google Scholar
  33. Lasserre, P.: Relations énergétiques entre le métabolisme respiratoire et la régulation ionique chez une annélide oligochéte euryhaline, Marionina acheta (Hagen). C.r. hebd. Séanc. Acad. Sci., Paris 268, 1541–1544 (1969)Google Scholar
  34. — et J. Renaud-Mornant: Interprétation écophysiologique des effects de temérature et de salinité sur l'intensité respiratoire de Derocheilocaris remanei biscayensis Delamare 1953 (Crustacea, Mystacocaridea). C. r. hebd. Séanc. Acad. Sci., Paris 272, 1159–1162 (1971)Google Scholar
  35. —— et J. Renaud-Mornant: Resistance and respiratory physiology of intertidal meiofauna to oxygen-deficiency. Neth. J. Sea Res. 7, 290–302 (1973)CrossRefGoogle Scholar
  36. McIntyre, A.D.: Ecology of marine meiobenthos. Biol. Rev. 44, 245–290 (1969)Google Scholar
  37. Morgan, L.R. and R. Singh: Cytochrome oxidasesuccinic dehydrogenase activities and the melanin pigment cycle in poikilothermic vertebrates. Comp. Biochem. Physiol. 28, 83–94 (1969)CrossRefPubMedGoogle Scholar
  38. Ott, J.: Determination of fauna boundaries of nematodes in an intertidal flat. Int. Revue ges. Hydrobiol. 57, 645–663 (1972)Google Scholar
  39. — and F. Schiemer: Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Neth. J. Sea Res. 7, 233–243 (1973)CrossRefGoogle Scholar
  40. Pamatmat, M.: Ecology and metabolism of a benthic community in an intertidal sandflat. Int. Revue ges. Hydrobiol. 53, 211–298 (1968)Google Scholar
  41. Riedl, R.J.: Gnathostomulida from America, first record of the new phylum from North America. Science, N.Y. 163, 445–452 (1969)Google Scholar
  42. — and J.A. Ott: A suction corer to yield electric potentials in coastal sediment layers. Senckenbergiana marit. 2, 67–84 (1971)Google Scholar
  43. Rieger, R. und J. Ott: Gezeitenbedingte Wanderungen von Turbellarien und Nematoden eines Nordadriatischen Sandstrandes. Vie Milieu 22, (Suppl.), 425–447 (1971)Google Scholar
  44. Saz, H.J.: Facultative anaerobiosis in the invertebrates: pathways and control systems. Am Zool. 11, 125–135 (1971)Google Scholar
  45. Schiemer, F.: Respiration rates of two species of gnathostomulids. Oecologia (Berl.) 13, 403–406 (1973)Google Scholar
  46. — and A. Duncan: Oxygen consumption of a fresh water benthic nematode, Tobrilus gracilis Bastian. Oecologia (Berl.) 15, 121–126 (1974)Google Scholar
  47. Teal, J. and W. Wieser: The distribution and ecology of nematodes in a Georgia salt marsh. Limnol. Oceanogr. 11, 217–222 (1966)Google Scholar
  48. Theede, H. und A. Ponat: Die Wirkung der Sauerstoffspannung auf die Druckresistenz einiger mariner Wirbelloser. Mar. Biol. 6, 66–73 (1970)Google Scholar
  49. Torres, J.J. and C.P. Mangum: Effects of hyperoxia on survival of benthic marine invertebrates. Comp. Biochem. Physiol. 47A, 17–22 (1974)CrossRefGoogle Scholar
  50. Vernberg, F.J.: Dissolved gases: animals. In: Marine ecology. Vol. 1. Environmental factors, Pt 3. pp 1491–1515. Ed. by O. Kinne. London: Wiley Interscience 1972Google Scholar
  51. Westheide, W.: Räumliche und zeitliche Differenzierung im Verteilungsmuster der marinen Interstitialfauna. Verh. dt. zool. Ges. 65, 23–32 (1972)Google Scholar
  52. Wickstrom, C.E. and R.W. Castenholz: Thermophilic ostracod: aquatic metazoan with the highest known temperature tolerance. Science, N.Y. 181, 1063–1064 (1973)Google Scholar
  53. Wieser, W.: Biotopstruktur und Besiedlungsstruktur. Helgoländer wiss. Meeresunters. 10, 359–376 (1964)Google Scholar
  54. — and J. Kanwisher: Respiration and anaerobic survival in some sea weed-inhabiting invertebrates. Biol. Bull. mar. biol. Lab., Woods Hole 117, 594–600 (1959)Google Scholar
  55. —— and J. Kanwisher: Ecological and physiological studies on marine nematodes from a small salt marsh near Woods Hole, Massachusetts. Limnol. Oceanogr. 6, 262–270 (1961)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • W. Wieser
    • 1
    • 2
  • J. Ott
    • 1
    • 2
  • F. Schiemer
    • 1
    • 2
  • E. Gnaiger
    • 1
    • 2
  1. 1.Institut für Zoophysiologie der Universität InnsbruckInnsbruckAustria
  2. 2.Lehrkanzel für Meeresbiologie und Limnologie der Universität WienWienAustria

Personalised recommendations