Skip to main content
Log in

The exchangeable ionic space, and salinity effects upon ion, water, and urea turnover rates in the dogfish Poroderma africanum

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Using radio-isotopes, the turnover rates of sodium, chloride, water, and urea were measured, at different salinities, in the pyjama shark, Poroderma africanum (Gmelin). The exchangeable ionic space was also measured. Sodium turnover was 0.24%/h in normal sea water (467 mM Na/l, 550 mM Cl/l, 1020 m0sm/l), and under similar conditions, chloride, water and urea showed turnover rates of 2.47, 97, and 0.08%/h, respectively. Chloride and water turnover showed maximal values in normal sea water, and declined with variation of the medium away from this salinity, the decline in chloride turnover rate being more marked. Exchangeable ionic space was calculated, using Chloride-36, and was found to be 34.4% body volume or 32.4 ml/100 g fresh weight. Present results show that chloride turnover is about 10 times that of sodium; a relationship previously observed in other elasmobranchs. Water turnover rates are similar to those of other elasmobranch species, although urea turnover is somewhat lower. Salinity has a pronounced effect upon chloride and urea turnover rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Boylan, J.W.: Gill permeability in Squalus acanthias. In: Sharks, skates and rays, pp 197–206. Ed. by P.W. Gilbert. Baltimore: Johns Hopkins 1967

    Google Scholar 

  • —: A model for passive urea reabsorption in the elasmobranch kidney. Comp. Biochem. Physiol. 42A, 27–30 (1972)

    Article  Google Scholar 

  • Burger, J.W. and D.C. Tosteson: Sodium influx and efflux in the spiny dogfish Squalus acanthias. Comp. Biochem. Physiol. 19, 649–653 (1966)

    Article  CAS  Google Scholar 

  • Carrier, J.C. and D.H. Evans: Ion, water and urea turnover rates in the nurse shark, Ginglymostoma cirratum. Comp. Biochem. Physiol. 41A, 761–764 (1972)

    Article  Google Scholar 

  • ——: Ion and water turnover in the freshwater elasmobranch Potamotrygon. Comp. Biochem. Physiol. 45A, 31–44 (1973)

    Google Scholar 

  • Chan, D.K.O., J.G. Phillips and I.C. Jones: Studies on electrolyte changes in the lip-shark, Hemiscyllium plagiosum with special reference to hormonal influence on the rectal gland. Comp. Biochem. Physiol. 23, 185–198 (1967)

    Article  CAS  Google Scholar 

  • Comar, C.L. (Ed.): Radioisotopes in biology and agriculture, 481 pp. New York: Mc Graw-Hill 1955

    Google Scholar 

  • Goldstein, L.: Urea biosynthesis in elasmobranchs. In: Sharks, skates and rays, p. 212. Ed. by P.W. Gilbert. Baltimore: Johns Hopkins 1967

    Google Scholar 

  • — and R.P. Forster: Osmoregulation and urea metabolism in the little skate, Raja erinacea. Am. J. Physiol. 220, 742–746 (1971)

    CAS  Google Scholar 

  • Haywood, G.P.: Hypo-osmotic regulation coupled with reduced metabolic urea in the dogfish Poroderma africanum: an analysis of serum osmolarity, chloride, and urea. Mar. Biol. 23, 121–127 (1973)

    Article  CAS  Google Scholar 

  • Holmes, W.N. and E.M. Donaldson: The body compartments and distribution of electrolytes. In: Fish physiology, Vol. l. pp 1–89. Ed. by W.S. Hoar and D.J. Randall. New York: Academic Press 1969

    Google Scholar 

  • Kempton, R.T.: Studies of the elasmobranch kidney-II. Reabsorption of urea by the smooth dogfish, Muetelus canis. Biol. Bull. mar. biol. Lab., Woods Hole 104, 45–56 (1953)

    Article  CAS  Google Scholar 

  • Kirsch, R.: Plasma chloride and sodium, and chloride space in the European eel, Anguilla anguilla L. J. exp. Biol. 57, 113–131 (1972)

    CAS  Google Scholar 

  • Maetz, J.: Les échanges de sodium chez le poisson Carassius auratus L. Action d'un inhibiteur de l'anhydrase carbonique. J. Physiol., Paris 48, 1085–1099 (1956)

    CAS  Google Scholar 

  • —: Mechanisms of salt and water transfer across membranes in teleosts in relation to the aquatic environment. In: Hormones and the environment, Ed. by G.K. Benson and J.G. Phillips. Cambridge: Cambridge University Press 1970

    Google Scholar 

  • Maetz, J. et B. Lahlou: Les échanges de sodium et de chlore chez un elasmobranche, Scyliorhinus, mesurés à l'aide des isotopes 24 Na et 36 Cl. J. Physiol., Paris 58, p. 249 (1966)

    Google Scholar 

  • Mayer, N. and J. Nibelle: Sodium space in freshwater and sea-water eels. Comp. Biochem. Physiol. 31, 589–597 (1969)

    Article  CAS  Google Scholar 

  • Payan, P., L. Goldstein and R.P. Forster: Gills and kidneys in ureosmotic regulation in euryhaline skates. Am. J. Physiol. 224, 367–372 (1973)

    CAS  Google Scholar 

  • — et J. Maetz: Balance hydrique et minérale chez les elasmobranches: arguments en favour d'un contrôle endocrinien. Bull. Inf. Sci. Technol. C.E.A. 146, 77–96 (1970)

    Google Scholar 

  • —: Balance hydrique chez les elasmobranches: arguments en favour d'un contrôle endocrinien. Gen. comp. Endocr. 16, 535–554 (1971)

    Article  CAS  Google Scholar 

  • —: Branchial sodium transport mechanisms in Scyliorhinus canicula: evidence for Na+/NH +4 and Na+/H+ exchanges and for a role for carbonic anhydrase. J. exp. Biol. 58, 487–502 (1973)

    CAS  Google Scholar 

  • Pré, J., P. Giraudet et P. Cornillot: Ultramicrodétermination directe automatique et manuelle de l'urée dans les lquides biologiques. Path. Biol., Paris 16, 895–899 (1968)

    Google Scholar 

  • Price, K.S.: Fluctuation in two osmoregulatory components, urea and sodium chloride of the clearnose skate Raja eglanteria. Bosc 1802-II Upon natural variations of the salinity of the external medium. Comp. Biochem. Physiol. 23, 77–82 (1967)

    Article  CAS  Google Scholar 

  • — and E.P. Creaser: Flucturations in two osmoregulatory components, urea and sodium chloride, of the clearnose skate Raja eglanteria. Bosc 1802-I Upon laboratory modification of external salinities. Comp. Biochem. Physiol. 23, 65–76 (1967)

    Article  CAS  Google Scholar 

  • Randall, D.J.: The circulatory system. In: Fish physiology, Vol. 4. pp 133–172. Ed. by W.S. Hoar and D.J. Randall. New York: Academic Press 1970

    Google Scholar 

  • Schales, O. and S.S. Schales: A simple and accurate method for the determination of chloride in biological fluids. J. biol. Chem. 140, 879–884 (1941)

    CAS  Google Scholar 

  • Thorson, T.B.: Measurement of the fluid compartments of four species of marine chondrichthyes. Physiol. Zoöl. 31, 16–23 (1958)

    Article  Google Scholar 

  • —: The partitioning of body water in osteichthyes: Phylogenetic and ecological implications in aquatic vertebrates. Biol. Bull. mar. biol. Lab., Woods Hole 120, 238–254 (1961)

    Article  Google Scholar 

  • de Vlaming, V.L. and M. Sage: Osmoregulation in the euryhaline elasmbranch Dasyatis sabina. Comp. Biochem. Physiol. 45A, 31–44 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. H. S. Blaxter, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haywood, G.P. The exchangeable ionic space, and salinity effects upon ion, water, and urea turnover rates in the dogfish Poroderma africanum . Mar. Biol. 26, 69–75 (1974). https://doi.org/10.1007/BF00389088

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00389088

Keywords

Navigation