Advertisement

Marine Biology

, Volume 36, Issue 2, pp 183–189 | Cite as

Frostschutz-Glykoproteine bei Mytilus edulis?

  • H. Theede
  • R. Schneppenheim
  • L Béress
Article

Abstract

Fractions of glycoproteins preventing formation of ice crystals in water were isolated from the mussel Mytilus edulis, using ion-exchange procedure and gel filtration. The protein fractions depress the freezing point of water more than would be expected from their concentrations, taking into account their molecular weights (>10 000 Daltons). It is suggested that the occurrence of such antifreeze glycoproteins contributes essentially to the mechanism of freezing resistance in the mussel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Zitierte Literatur

  1. Andrews, P.: The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J. 96, 595–606 (1965)CrossRefGoogle Scholar
  2. Asahina, E.: Freezing and frost resistance in insects. In: Cryobiology, pp 451–489. Ed. by H.T. Meryman. London: Academic Press 1966Google Scholar
  3. Béress, L., R. Béress and G. Wunderer: Purification of three polypeptides with neuro- and cardiotoxic activity from the sea anemone Anemonia sulcata. Toxicon 13, 359–367 (1975)CrossRefGoogle Scholar
  4. DeVries, A.L.: Glycoproteins as biological antifreeze agents in antarctic fishes. Science, N.Y. 172, 1152–1155 (1971)CrossRefGoogle Scholar
  5. —, S.K. Komatsu and R.E. Feeney: Chemical and physical properties of freezing point-depressing glycoproteins from antarctic fishes. J. biol. chem. 245, 2901–2908 (1970)Google Scholar
  6. — and D.E. Wohlschlag: Freezing resistance in some antarctic fishes. Science, N.Y. 163, 1073–1075 (1969)CrossRefGoogle Scholar
  7. Florkin, M. and E. Schoffeniels: Molecular approaches to ecology, Chapter VII. 203 pp. New York & London: Academic Press 1969Google Scholar
  8. Hargens, A.R.: Freezing resistance in polar fishes. Science, N.Y. 176, 184–186 (1972)CrossRefGoogle Scholar
  9. Hölzer, K.H.: Notiz zur Perjodsäure-Fuchsinschwefligsäurefärbung. Naturwissenschaften 43, 398–399 (1956)Google Scholar
  10. Jankowsky, H.D., H. Laudien und H. Precht: Ist eine intrazelluläre Eisbildung bei Tieren tödlich? Versuche mit Polypen der Gattung Laomedea. Mar. Biol. 3, 73–77 (1969)CrossRefGoogle Scholar
  11. Kanwisher, J.W.: Freezing in intertidal animals. Biol. Bull. mar. biol. Lab., Woods Hole 109, 56–63 (1955)CrossRefGoogle Scholar
  12. —: Freezing in intertidal animals. In: Cryobiology, pp 487–494. Ed. by H.T. Meryman. London: Academic Press 1966Google Scholar
  13. Keil, B. und Z. Sormova: Laboratoriumsbuch für Biochemiker, 925 pp. Leipzig: Akademische Verlagsgesellschaft Geest & Portig 1965Google Scholar
  14. Kinne, O.: Temperature: animals — invertebrates. In: Marine ecology. Vol 1. Environmental factors, Part 1. pp 407–514. Ed. by O. Kinne. London, New York: Wiley Interscience 1970Google Scholar
  15. Lange, R.: Some recent work on osmotic, ionic and volume regulation in marine animals. Oceanogr. mar. Biol. A. Rev. 10, 97–136 (1972)Google Scholar
  16. Lovelock, J.E.: The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim. biophys. Acta 11, 28–36 (1953)CrossRefGoogle Scholar
  17. Meryman, H.T.: The exceeding of a minimum tolerable cell volume in hypertonic suspension as a cause of freezing injury. In: The frozen cell, pp 51–67. Ed. by G.E.W. Wolstenholme and M. O'Connor, London: J.&A. Churchill 1970Google Scholar
  18. Pharmacia: Sephadex®, Leitfaden zur Gelfiltration, 9 pp. Uppsala: Pharmacia 1973Google Scholar
  19. Ramsay, J.A.: A new method of freezing point determination for small quantities. J. exp. Biol. 26, 57–64 (1949)Google Scholar
  20. — and R.H.J. Brown: Simplified apparatus and procedure for freezing point determinations upon small volumes of fluid. J. scient. Instrum. 32, 372–375 (1955)CrossRefGoogle Scholar
  21. Salt, R.W.: Natural occurrence of glycerol in insects and its relations to their ability to survive freezing. Can. Ent. 89, 491–494 (1957)CrossRefGoogle Scholar
  22. Shier, W.T., Y. Lin and A.L. DeVries: Structure and mode of action of glycoproteins from an antarctic fish. Biochim. biophys. Acta 263, 406–413 (1972)CrossRefGoogle Scholar
  23. Spiro, R.G.: Glycoproteins. Adv. Protein Chem. 27, 349–467 (1973)CrossRefGoogle Scholar
  24. Theede, H.: Vergleichende experimentelle Untersuchungen über die zelluläre Gefrierresistenz mariner Muscheln. Kieler Meeresforsch. 19, 153–166 (1965)Google Scholar
  25. —: Vergleichende ökologisch-physiologische Untersuchungen zur zellulären Kälteresistenz mariner Evertebraten. Mar. Biol. 15, 160–191 (1972)CrossRefGoogle Scholar
  26. —: Resistance adaptations of marine invertebrates and fish to cold. In: Effects of temperature on ecothermic organisms, pp 249–269. Ed. by W. Wieser. Berlin, Heidelberg, New York: Springer Verlag 1973CrossRefGoogle Scholar
  27. Umminger, B.L.: Sub-zero temperatures and supercooling in Fundulus heteroclitus. Am. Zool. 7, p. 731 (1967)Google Scholar
  28. —: Low temperature resistance adaptations in the killifish Fundulus heteroclitus. In: Physiological ecology of estuarine organisms, pp 59–61. Ed. by F.J. Vernberg. Columbia S.C.: University of South Carolina Press 1975Google Scholar
  29. Williams, R.J.: Cryoprotective agents in intertidal mollusks. Cryobiology (Abstract) 3, p. 370 (1967)Google Scholar
  30. —: The mechanism of cryoprotection in the intertidal mollusk Mytilus. Cryobiology (Abstract) 4, p. 250 (1968)Google Scholar
  31. —: Freezing tolerance in Mytilus edulis. Comp. Biochem. Physiol. 35, 145–161 (1970)CrossRefGoogle Scholar
  32. Zwisler, O. und H. Biel: Elektrophorese in horizontalem Polyacrylamidgel. Z. klin. Chem. 4, p. 58 (1966)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • H. Theede
    • 1
  • R. Schneppenheim
    • 1
  • L Béress
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKielGermany

Personalised recommendations