Marine Biology

, Volume 36, Issue 2, pp 105–112 | Cite as

Variations in pigment contents of the diatom Phaeodactylum tricornutum during growth

  • J. I. Carreto
  • J. A. Catoggio


Changes in the amounts of chlorophyll a, chlorophyll c, fucoxanthin, diadinoxanthin and β-carotene were determined during Phaeodactylum tricornutum growth. The transition of the culture from the logarithmic to the stationary phase is accompanied by an increase in the carotenoids: chlorophyll a ratio, associated with variations in the percentage of individual carotenoids. While fucoxanthin content decreases with the age of the culture, diadinoxanthin content increases and β-carotene remains almost constant. The furanoid isomer of diadinoxanthin, absent during logarithmic growth, appears increasingly during the nutrient-deficient period. Changes in the amounts of chlorophyll a, chlorophyll c and fucoxanthin are quite similar.


Chlorophyll Carotenoid Carotene Pigment Content Total Carotenoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aitzetmüller, K., W.A. Svec, J.J. Katz and H.H. Strain: Structure and chemical identity of diadinoxanthin and the principal xanthophyll of Euglena. Chem. Commun. 1017, 32–33 (1968)Google Scholar
  2. Berland, B.: Contribution à l'étude des cultures des diatomées marines. Recl Trav. Stn mar. Endoume 40, 3–82 (1966)Google Scholar
  3. Bonin, D.J.: Influence de differents facteurs écologiques sur la croissance de la diatomée marine Chaetoceros affinis Launder en culture. Téthys 1, 173–238 (1969)Google Scholar
  4. Castelví, J.: Pigmentos de la diatomea marina Skeletonema costatum (Grev.) en su dependencia de los factores ambientales y de la dinámica de las poblaciones. Investigación pesq. 24, 129–137 (1963)Google Scholar
  5. Bunt, J.S.: Some characteristics of microalgae isolated from Antarctic sea ice. Antarctic Res. Ser. 11, 1–14 (1968)Google Scholar
  6. Droop, M.R.: Optimum relative and actual ionic concentrations for growth of some euryhaline algae. Verh. int. Verein. theor. angew. Limnol. 13, 722–730 (1958)Google Scholar
  7. Dutton, H.J. and W.M. Manning: Evidence for carotenoid-sensitized photosynthesis in the diatom Nitzschia closterium. Am. J. Bot. 28, 516–526 (1941)CrossRefGoogle Scholar
  8. Emerson, R. and E. Rabinowitch: Red drop and role of auxiliary pigments in photosynthesis. Pl. Physiol., Lancaster 33, 477–485 (1960)CrossRefGoogle Scholar
  9. Fork, D.C.: Observations on the function of chlorophyll a and accessory pigments in photosynthesis. In: Photosynthetic mechanisms of green plants, pp 353–361. Ed. by B. Kok and A.T. Jagendorf. Washington: National Academy of Sciences 1963Google Scholar
  10. Hayward, J.: Studies on the growth of Phaeodactylum tricornutum. IV. Comparison of different isolates. J. mar. biol. Ass. U.K. 48, 657–666 (1968)CrossRefGoogle Scholar
  11. Healey, F.P., J. Coombs and B.E. Volcani: Changes in pigment content of the diatom Navicula pelliculosa (Bré.) Hilse in silicon-starvation synchrony. Arch. Mikrobiol. 59, 131–142 (1967)CrossRefGoogle Scholar
  12. Jeffrey, S.W.: Paper chromatographic separation of chlorophylls and carotenoids from marine algae. Biochem. J. 80, 336–342 (1961)CrossRefGoogle Scholar
  13. —: Purification and properties of chlorophyll c from Sargassum flavicans. Biochem. J. 86, 313–318 (1963)CrossRefGoogle Scholar
  14. Ketchum, B.H., J.H. Ryther, C.S. Yentsch and N. Corwin: Environmental conditions for primary production. D. 1. Productivity in relation to nutrients. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 144, 132–140 (1958)Google Scholar
  15. Lewin, J.C.: The taxonomic position of Phaeodactylum tricornutum. J. gen. Microbiol. 18, 427–432 (1958)CrossRefGoogle Scholar
  16. Madgwick, J.C.: Chromatographic determination of chlorophylls in algal cultures and phytoplankton. Deep-Sea Res. 13, 459–466 (1966)Google Scholar
  17. Maestrini, S.: Etude de l'influence de quelques facteurs de milieu sur la productivité d'une algue planctonique en culture. Recl Trav. Stn mar. Endoume 41, 33–108 (1966)Google Scholar
  18. Mann, J.E. and J. Myers: On pigments, growth, and photosynthesis of Phaeodactylum tricornutum. J. Phycol. 4, 349–355 (1968)CrossRefGoogle Scholar
  19. Margalef, R.: Valeur indicatrice de la composition des pigments du phytoplancton sur la productivité, composition taxonomique et propriétés dynamiques des populations. Rapp. P.-v. Réun, Commn int. Explor. scient. Mer Méditerr. 15, 277–281 (1960)Google Scholar
  20. —: Modelos simplificados del ambiente marino para el estudio de la sucesión y distribución del fitoplancton y del valor indicador de sus pigmentos. Investigación pesq. 23, 11–52 (1963)Google Scholar
  21. —: Ecological correlations and the relationship between primary productivity and community structure. Proc. I. B. P. Symp., Pallanza, Italy. Memorie Ist. Ital. Idrobiol. 18, 355–364 (1965)Google Scholar
  22. Mil'ko, E.S.: Effect of various environmental factors on pigment production in the alga Dunaliella salina. Microbiology 32, 256–261 (1963)Google Scholar
  23. Parsons, T.R.: On the pigment composition of eleven species of marine phytoplankton. J. Fish. Res. Bd Can. 18, 1017–1025 (1961)CrossRefGoogle Scholar
  24. — and J.D.H. Strickland: Discussion of spectrophotometric determination of marine plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J. mar. Res. 21, 155–163 (1963)Google Scholar
  25. Provasoli, L., J.J.A. McLaughlin and M.R. Droop: The development of artificial media for marine algae. Arch. Mikrobiol. 25, 392–428 (1957)CrossRefGoogle Scholar
  26. Rabinowitch, E.I.: Photosynthesis and related processes, Vol. II. 661 pp. New York: Interscience 1951Google Scholar
  27. Riley, J.P. and T.R.S. Wilson: The pigments of some marine phytoplankton species. J. mar. biol. Ass. U.K. 47, 351–362 (1967)CrossRefGoogle Scholar
  28. Schwenker, U.: Einfluß des Stoffwechsels auf die Pigmentzusammensetzung in alternden Kulturen von Euglena gracilis. Planta 101, 101–116 (1971)CrossRefGoogle Scholar
  29. SCOR-UNESCO Working Group 17: Determination of photosynthetic pigments. 1. In: Determination of photosynthetic pigments in sea water, pp 9–18. Paris: UNESCO 1966Google Scholar
  30. Strain, H.H.: Fat-soluble chloroplast pigments: their identification and distribution in various Australian plants. In: Biochemistry of chloroplasts, Vol. I. pp 387–406. Ed. by T.W. Goodwin. London: Academic Press 1966Google Scholar
  31. Strickland, J.D.H.: Production of organic matter in the primary stages of the marine food chain. In: Chemical oceanography, Vol. I. pp 477–610. Ed. by J.P. Riley and B. Skirrow. London: Academic Press 1965Google Scholar
  32. Tanada, T.: The photosynthetic efficiency of carotenoid pigments in Navicula minima. Am. J. Bot. 38, 276–283 (1951)CrossRefGoogle Scholar
  33. Teale, F.W.J.: Carotenoid-sensitized fluorescence of chlorophyll in vitro. Nature, Lond. 181, 415–416 (1958)CrossRefGoogle Scholar
  34. Wallen, D.G. and G.H. Geen: Light quality and concentration of proteins, RNA, DNA and photosynthetic pigments in two species of marine plankton algae. Mar. Biol. 10, 44–51 (1971)CrossRefGoogle Scholar
  35. Yentsch, C.S. and R.F. Vaccaro: Phytoplankton nitrogen in the oceans. Limnol. Oceanogr. 3, 443–448 (1958)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. I. Carreto
    • 1
  • J. A. Catoggio
    • 2
  1. 1.Instituto de Biología MarinaMar del PlataArgentina
  2. 2.Departamento de Química Analítica, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations