Advertisement

Marine Biology

, Volume 39, Issue 2, pp 179–190 | Cite as

Etude des modifications du métabolisme respiratoire de populations d'Acartia clausi (Crustacea: Copepoda) après passage dans le circuit de refroidissement d'une centrale thermo-électrique

  • R. Gaudy
Article

Abstract

The respiratory metabolism of the copepod Acartia clausi, the most abundant species of zooplankton in the area investigated (Gulf of Fos, Mediterranean Sea, France) was studied at different temperatures during an annual cycle. Copepods were collected from three different stations: first the intake area, where sea water was pumped into the cooling circuit of a power plant; second, the outlet area of this circuit, where the heated effluents were discharged with an average Δt of 6°C; third, a small protected bay directly influenced by the flow of the heated waters. Seasonal variations in respiration intensity were observed, with a spring maximum. Specimens collected from the heated effluents exhibited comparatively reduced metabolism. Q10 varied with temperature and time of year, suggesting seasonal regulation of metabolism. Except in March, where metabolic curves differed markedly according to the origin of the sample (species from the heated effluents displaying a metabolic curve of the summer type), the principal difference in shape of the respiration-temperature curves appeared in the range of 10° to 14°C, where reduced respiration was observed in specimens from the heated effluents. When A. clausi from external areas were exposed to artificial thermal stress, they displayed a respiratory metabolism pattern similar to that of specimens sampled from the heated effluents. Experiments performed with warm-acclimated copepods revealed respiratory modifications similar to those observed in copepods from the heated effluent. These results are discussed in relation to the thermal conditions prevailing at the investigated site.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Littérature citée

  1. Anraku, M.: Influence of the Cape Cod Canal on the hydrography and on the copepods in Buzzards Bay and Cape Cod Bay, Massachusets. II. Respiration and feeding. Limnol. Oceanogr. 9, 195–206 (1964)Google Scholar
  2. Bader, R.G. et D.C. Tabb: An ecological study of south Biscayne Bay in the vicinity of Turkey Point. Prog. Rep. U.S. atom. Energy Commn. (Coral Gables, Fla; Rosenstiel School mar. atmos. Sci., Univ. Miami) 1–81 (1970)Google Scholar
  3. Barnes, H. and M. Barnes: Seasonal changes in the acutely determined oxygen consumption and effect of temperature for three common cirripedes, Balanus balanoides (L.), B. balanus (L.) and Chthamalus stellatus (Poli). J. exp. mar. Biol. Ecol. 4, 36–50 (1969)Google Scholar
  4. Basedow, T.: Über die Auswirkung von Temperatureschocks auf die Temperaturresistenz poikilothermer Wassertiere. Eine Untersuchung zum Problem der thermischen Schockanpassung bei Tieren. Int. Revue ges. Hydrobiol. 54, 765–789 (1969)Google Scholar
  5. Blanc, F. et M. Leveau: Plancton et eutrophie: aire d'épandage rhodanienne et Golfe de Fos (traitement mathématique des données), Thèse Doctorat Science Université Aix-Marseille 1973Google Scholar
  6. Bullock, T.H.: Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30, 311–342 (1955)Google Scholar
  7. Carpenter, E.J., B.B. Peck and S.J. Anderson: Survival of copepods passing through a nuclear power station on northeastern Long Island Sound, USA. Mar. Biol. 24, 49–55 (1974)Google Scholar
  8. Conover, R.J.: Oceanography of Long Island Sound, 1952–1954. VI. Biology of Acartia clausi and A. tonsa. Bull. Bingham oceanogr. Coll. 15, 156–223 (1956)Google Scholar
  9. Fry, F.E.J.: Temperature compensation. A. Rev. Physiol. 20, 207–224 (1958)Google Scholar
  10. Gaudy, R.: Constribution à la connaissance du cycle biologique et de la physiologie des copépodes du Golfe de Marseille. 2. Etude du cycle biologique de quelques espèces caractéristiques. Téthys 4, 175–242 (1972)Google Scholar
  11. —: Les varilations saisonnières de la respiration chez quatre espèces de copépodes pélagiques du Golfe de Marseille. Neth. J. Sea Res. 7, 267–279 (1973)Google Scholar
  12. Gauld, D.T. and J.E.G. Raymont: The respiration of some planktonic copepods. II. The effect of temperature. J. mar. biol. Ass. U.K. 48, 49–75 (1953)Google Scholar
  13. González, J.G.: Critical thermal maxima and upper lethal temperatures for the calanoid copepods Acartia tonsa and A. clausi. Mar. Biol. 27, 219–223 (1974)Google Scholar
  14. Halcrow, K.: Acclimation to temperature in the marine copepod Calanus finmarchicus (Gunner). Limnol. Oceanogr. 8, 1–8 (1963)Google Scholar
  15. Heinle, D.: Temperature and zooplankton. Chesapeake Sci. 10, 186–209 (1969)Google Scholar
  16. Markowski, S.: The cooling water of power stations: a new factor in the environment of marine and freshwater invertebrates. J. Anim. Ecol. 28, 243–258 (1959)Google Scholar
  17. —: Observations on the response of some benthonic organisms to power station cooling water. J. Anim. Ecol. 29, 349–357 (1960)Google Scholar
  18. Mayzaud, P.: Etude du métabolisme de quelques espèces du zooplancton et ses conséquences biologiques: respiration et excrétion azotée, Thèse Doctorat 3ème cycle, Université Paris VI 1971Google Scholar
  19. Newell, R.C. and V.I. Pye: Seasonal changes in the effect of temperature on the oxygen consumption of the winkle Littorina littorea (L.) and the mussel Mytilus edulis L. Comp. Biochem. Physiol. 34, 367–383 (1970)Google Scholar
  20. Nival, P., G. Malara, R. Charra, I. Palazzoli et S. Nival: Etude de la respiration et de l'excrétion de quelques copépodes planctoniques (Crustacea) dans la zone de remontée d'eau profonde des côtes marocaines. J. exp. mar. Biol. Ecol. 15, 231–260 (1974)Google Scholar
  21. Pattée, E.: Sténothermie et eurythermie. Les invertébrés d'eau douce et la variation journalière de température. Annals Limnol. 1, 281–434 (1965)Google Scholar
  22. Rao, K.P. and T.H. Bullock: Q10 as a function of size and habitat temperature in poikilotherms. Am. Nat. 88, 33–49 (1954)Google Scholar
  23. Reeve, M.R. and E. Cosper: The acute thermal effects of heated effluents on the copepod Acartia tonsa from a sub-tropical bay and some problems of assessment. In: F.A.O. Technical Conference on marine pollution and its effects on living resources and fishing, pp 1–5 Rome: 1970Google Scholar
  24. Schlieper, C.: Versuch einer physiologischen Analyse der besonderen Eigenschaften einiger eurythermer Wassertiere. Biol. Zbl. 71, 449–461 (1952)Google Scholar
  25. —: Genetic and nongenetic cellular resistance adaptation in marine invertebrates. Helgoländer wiss. Meeresunters. 14, 482–502 (1966)Google Scholar
  26. Sylva, D. de: Theoretical considerations of the effects of heated effluents on marine fishes. In: Biological aspects of thermal pollution, pp 229–293. Ed. by P.A. Krenkel and F.L. Parker. Vanderbilt: Vanderbilt University Press 1969Google Scholar
  27. Vernberg, W.B.: Metabolic-environmental interaction in marine plankton. Proc. Eur. mar. Biol. Symp. 5, 189–196 (1972). (Padova: Piccin Editore)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • R. Gaudy
    • 1
    • 2
  1. 1.Station Marine d'EndoumeCentre Universitaire de LuminyMarseilleFrance
  2. 2.Laboratoire d'Hydrobiologie MarineCentre Universitaire de LuminyMarseilleFrance

Personalised recommendations