Marine Biology

, Volume 39, Issue 2, pp 129–136 | Cite as

Variation in lipid classes during the molting cycle of the prawn Penaeus japonicus

  • S. Teshima
  • A. Kanazawa
  • H. Okamoto


The variation in the concentration and fatty acid composition of lipid classes during the molting cycle of the prawn Penaeus japonicus was investigated. The lipid concentration of the whole body reached a maximum at mid-premolt (Stage D2) and then decreased to low level at late premolt (Stage D3–4). The accumulation of lipids during the premolt period seemed to be attributable to the increase of both polar and neutral lipids. The increase of neutral lipids at Stage D2 was derived from not only triglycerides but also free sterols and free fatty acids. Regarding the fatty acid composition of every lipid class, a marked variation occurred mainly at the intermolt (Stage C). In this stage, the polar lipids were rich in monoenoic acids such as 18:1 and poor in polyenoic acids such as 20:5ω3 and 22:6ω3. The triglycerides were rich in polyenoic acids at Stage C, but poor in monoenoic acids such as 16:1 and 18:1. The steryl esters contained large amounts of saturated acids such as 16:0 and 18:0 throughout the molting cycle, however the level of polyenoic acids increased at Stage C.


Lipid Ester Triglyceride Acid Composition Free Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bligh, E.G. and W.J. Dyer: Rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)Google Scholar
  2. Castell, J.D.E., E.G. Mason and J.F. Covey: Cholesterol requirements of american lobster (Homarus americanus). J. Fish. Res. Bd Can. 32, 1431–1435 (1975)Google Scholar
  3. Cognie, D.: Contribution à l'étude de la biologie de Penaeus kerathurus (Forskaol), crustacé décapode, en fonction du cycle d'intermue, Thèse de Spécialité, Université d'Aix-Marseille 1969Google Scholar
  4. Dall, W.: Studies on the physiology of a shrimp, Metapenaeus mastersii (Haswell) (Crustacea: Decapoda: Penaeidae). I. Blood constituents. Aust. J. mar. Freshwat. Res. 15, 145–161 (1964)Google Scholar
  5. —: Studies on the physiology of shrimp, Metapenaeus sp. (Crustacea: Decapoda: Penaeidae). IV. Carbohydrate metabolism. Aust. J. mar. Freshwat. Res. 16, 163–180 (1965)Google Scholar
  6. Drach, P.: Mue et cycle d'intermue chez les crustacés décapodes. Annls Inst. océanogr., Paris (N.S.) 19, 103–610 (1939)Google Scholar
  7. —: Etude préliminaire sur le cycle d'intermue et son conditionnement hormonal chez Leander serratus (Pennant). Bull. biol. Fr. Belg. 78, 40–61 (1944)Google Scholar
  8. — and C. Tchernigovtzeff: Sur la méthode de détermination des stades d'intermue et son application générale aux crustacés. Vie Millieu (Ser. A) 18, 595–610 (1967)Google Scholar
  9. Gilbert, L.I. and J.D. O'Connor: Lipid metabolism and transport in arthropods. In: Chemical zoology, pp 229–253. Ed. by B.T. Scheer and M. Florkin. New York: Academic Press 1970Google Scholar
  10. Guary, J.-C.B.: Contribution a l'étude du métabolism des lipides chez le crustace décapode (Penaeus japonicus) Bate. Thèse de Spécialité, Université d'Aix-Marseille 1973Google Scholar
  11. — and A. Kanazawa: Distribution and fate of exogenous cholesterol during the molting cycle of the prawn, Penaeus japonicus Bate. Comp. Biochem. Physiol. 46A, 5–10 (1973)Google Scholar
  12. Heath, J.R. and H. Barnes: Some changes in biochemical composition with season and during the molting cycle of the common shore crab, Carcinus maenas (L.). J. exp. mar. Biol. Ecol. 5, 199–233 (1970)Google Scholar
  13. Kanazawa, A., N. Tanaka, S. Teshima and K. Kashiwada: Nutritional requirements of prawn — II. Requirement for sterols. Bull. Jap. Soc. scient. Fish. 37, 211–215 (1971)Google Scholar
  14. — and S. Teshima: In vivo conversion of cholesterol to steroid hormones in the spiny lobster, Panulirus japonica. Bull. Jap. Soc. scient. Fish. 37, 891–903 (1971)Google Scholar
  15. —— Y. Sakamoto and J.-C.B. Guary: The variation of lipids and cholesterol content in the tiissues of prawn, Penaeus japonicus, during molting cycle. Bull. Jap. Soc. scient. Fish. 42, 1003–1007 (1976)Google Scholar
  16. Lautier, J. et G. Vernet: Comparaison du métabolisme lipidique de l'hépatopancréas de Pachygrapsus marmoratus Fabricius (décapode brachyoure) chez des animaux témoins et opérés des pédoncules oculaires en fonction du cycle d'intermue. C.r.hebd. Séanc. Acad. Sci., Paris (Sér. D) 275, 1899–1902 (1972)Google Scholar
  17. O'Connell Whitney, J.: Absence of sterol synthesis in larvae of the mud crab Rhithropanopeus harrisii and of the spider crab Libinia emarginata. Mar. Biol. 3, 134–135 (1969)Google Scholar
  18. O'Connor, J.D. and L.I. Gilbert: Aspects of lipid metabolism in crustaceans. Am. Zool. 8, 529–539 (1968)Google Scholar
  19. ——: Alteration in lipid metabolism associated with premolt activity in a land crab and fresh-water crayfish. Comp. Biochem. Physiol. 29, 889–904 (1969)Google Scholar
  20. Renaud, L.: Le cycle des réserves organiques chez les crustacés décapodes. Annls Inst. océanogr., Paris (N.S.) 24, 259–359 (1949)Google Scholar
  21. Schaefer, H.J.: The determination of some stages of the molting cycle of Penaeus duorarum by microscopic examination of the setae of the endopodites of pleopods. F.A.O. Fish. Rep. 57, 381–391 (1967)Google Scholar
  22. Scheer, B.T.: Aspect of the intermoult cycle in natantians. Comp. Biochem. Physiol. 1, 3–18 (1960)Google Scholar
  23. Spaziani, E. and S.B. Kater: Uptake and turnover of cholesterol-14C in Y-organ of the crab Hemigrapsus as a function of the molt cycle. Gen. comp. Endocr. 20, 534–549 (1973)Google Scholar
  24. Teshima, S.: Studies on the sterol metabolism in marine crustaceans. Mem. Fac. Fish. Kagoshima Univ. 21, 69–147 (1972)Google Scholar
  25. —, H.J. Ceccaldi, J. Patrois and A. Kanazawa: Bioconversion of desmosterol to cholesterol at various stages of molting cycle in Palaemon serratus Pennant, Crustacea Decapoda. Comp. Biochem. Physiol. 50B, 485–489 (1975)Google Scholar
  26. — and A. Kanazawa: Biosynthesis of sterols in the lobster, Panulirus japonica, the prawn, Penaeus japonicus, and the crab, Portunus trituberculatus. Comp. Biochem. Physiol. 38B, 597–602 (1971a)Google Scholar
  27. ——: Utilization and biosynthesis of sterols in Artemia salina. Bull. Jap. Soc. scient. Fish. 37, 720–723 (1971b)Google Scholar
  28. ——: Variation in lipid classes during molting cycle of a shrimp, Palaemon paucidens. Bull. Jap. Soc. scient. Fish. 42, 1129–1135 (1976)Google Scholar
  29. Teshima, S., A. Kanazawa and H. Okamoto: Analysis of fatty acids of some crustaceans. Mem. Fac. Fish. Kagoshima Univ. (In press). (1976)Google Scholar
  30. Travis, D.: The molting cycle of the spiny lobster, Panulirus argus Latreille — II. Preecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biol. Bull. mar. biol. Lab., Woods Hole 108, 88–112 (1955)Google Scholar
  31. Van den Oord, A.: The absence of cholesterol synthesis in the crab, Cancer pagurus L. Comp. Biochem. Physiol. 13, 461–467 (1964)Google Scholar
  32. Zagalsky, P.F., D.F. Cheesman and H.J. Ceccaldi: Studies on carotenoid-containing lipoprotein isolated from the eggs and ovaries of certain marine invertebrates. Comp. Biochem. Physiol. 22, 851–871 (1967)Google Scholar
  33. Zandee, D.I.: Lipid metabolism in Astacus astacus L. Nature, Lond. 195, 814–815 (1962)Google Scholar
  34. —: Absence of sterol synthesis in some arthropods. Nature, Lond. 202, 1335–1336 (1964)Google Scholar
  35. —: Metabolism in the crayfish, Astacus astacus L. III. Absence of cholesterol synthesis. Archs int. Physiol. Biochim. 74, 434–441 (1966)Google Scholar
  36. —: Absence of cholesterol synthesis as contrasted with the presence of fatty acid synthesis in some arthropods. Comp. Biochem. Physiol. 20, 811–822 (1967)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • S. Teshima
    • 1
  • A. Kanazawa
    • 1
  • H. Okamoto
    • 1
  1. 1.Faculty of FisheriesUniversity of KagoshimaKagoshimaJapan

Personalised recommendations