Advertisement

Marine Biology

, Volume 56, Issue 4, pp 319–326 | Cite as

Grazing by 35 to 202 μm micro-zooplankton in Long Island Sound

  • G. M. Capriulo
  • E. J. Carpenter
Article

Abstract

Micro-zooplankton abundance in Long Island Sound varied from 103 to 104 animals l-1 at the station studied and consisted almost entirely of tintinnids. The micro-zooplankton were found to sometimes remove a significant portion of the chlorophyll a standing stock, with an upper limit of 41% of the standing stock being ingested per day. Observed ingestion rates ranged from 0.001 to 0.17 ng chlorophyll a removed animal-1 h-1 and from 0.06 to 87 cells removed animal-1 h-1, depending on season and type of cell being ingested. Filtering rates varied from 1.03 to 84.7 μl animal-1 h-1. As a community, the micro-zooplankton exhibited the same order of magnitude ingestion and filtering rates as those noted for copepods.

Keywords

Chlorophyll Ingestion Rate Standing Stock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, J. A. and J. H. Steele: Shipboard experiments on the feeding of Calanus finmarchicus. In: Some contemporary studies in marine science, pp 19–36. Ed. by H. Barnes. London: G. Allen & Unwin 1966Google Scholar
  2. Antia, N. J., C. D. McAllister, T. R. Parsons, K. Stephens and J. D. H. Strickland: Further mesurements of primary production using a large-volume plastic sphere. Limnol. Oceanogr. 8, 166–183 (1963)Google Scholar
  3. Barnes, R. S. K.: Invertebrate zoology, 743 pp. Philadelphia: W. B. Saunders & Co 1968Google Scholar
  4. Beers, J. R. and G. L. Stewart: Micro-zooplankters in the plankton communities of the upper waters of the eastern tropical Pacific. Deep-Sea Res. 18, 861–883 (1971)Google Scholar
  5. Deevey, G. B.: Oceanography of Long Island Sound, 1952–1954, V. Zooplankton. Bull. Bingham. oceanogr. Coll. 15, 113–155 (1956)Google Scholar
  6. Dussart, B. M.: Les différentes catégories de planction. Hydrobiologia 26, 72–74 (1965)Google Scholar
  7. Frost, B. W.: Effects of size and concentration of food particles on the food behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972)Google Scholar
  8. Gauld, D. T.: The swimming and feeding of planktonic copepods. In: Some contemporary studies in marine science, pp 313–334. Ed. by H. Barnes. London: G. Allen & Unwin 1966Google Scholar
  9. Heinbokel, J.F.: Studies on the functional role of tintinnids in the Southern California Bight. 1. Grazing and growth rates in laboratory cultures. Mar. Biol. 47, 177–189 (1978a)Google Scholar
  10. Heinbokel, J. F.: Studies on the functional role of tintinnids in the Southern California Bight. II. Grazing rates of field populations. Mar. Biol. 47, 191–197 (1978b)Google Scholar
  11. Johansen, P. L.: Nitrogen excretion by tintinnids. A. Mtg Am. Soc. Limnol. Oceanogr. 1976 (Abstr.)Google Scholar
  12. Jørgensen, C. B.: Biology of suspension feeding, 375 pp New York: Pergamon Press 1966Google Scholar
  13. Loftus, M. E., D. V. Subba Rao and H. H. Seliger. Growth and dissipation of phytoplankton in Chesapeake Bay. I. Response to a large pulse of rainfall. Chesapeake Sci. 13, 282–299 (1972)Google Scholar
  14. Lohmann, H.: Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wiss. Meeresunters. (Abt. Keil) 10, 131–370 (1908)Google Scholar
  15. McLaren, I. A.: Effects of temperature on growth of zooplankton and the adaptive value of vertical migration. J. Fish Res. Bd Can. 20, 685–727 (1963)Google Scholar
  16. McLaren, I. A.: Some relationships between temperature and egg size, body size, development rate and fecundity of the copepod Pseudocalanus. Limnol. Oceanogr. 10, 528–538 (1965)Google Scholar
  17. Mullin, M. M.: Some factors affecting the feeding of marine copepods of the genus Calanus. Limnol. Oceanogr. 8, 239–250 (1963)Google Scholar
  18. O'Connors, H. B., Jr., D. C. Biggs and D. V. Ninivaggi: Particlesize-dependent maximum grazing rates for Temora longicornis fed natural particulate assemblages. Mar. Biol. 56, 65–70 (1980)Google Scholar
  19. Rassoulzadegan, F.: Dimensions et taux d'ingestion des particules consommées par un tintinnide Favella ehrenbergii (Clap. et Lachm.) Jörg., cilié pelagique Marin. Annls Inst. océanogr., Paris (N.S.) 54, 17–24 (1978)Google Scholar
  20. Riley, G. A.: Oceanography of Long Island Sound, 1952–1954. IX. Production and utilization of organic matter. Bull. Bingham. oceanogr. Coll. 15, 324–341 (1956)Google Scholar
  21. Sokal, R. R. and F. J. Rohlf: Biometry. The principle and practice of statistics in biological research, 776 pp. San Francisco: W. H. Freeman & Company 1969Google Scholar
  22. Steemann Nielsen, E.: The relationship between phytoplankton and zooplankton in the sea. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 153, 178–182 (1962)Google Scholar
  23. Voronina, N. M. and I. N. Sukhanova: Food composition in the mass species of antarctic hervivorous copepods. Okeanologija, Mosk 16, 1082–1086 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. M. Capriulo
    • 1
  • E. J. Carpenter
    • 1
  1. 1.Marine Sciences Research CenterState University of New York at Stony BrookStony BrookUSA

Personalised recommendations