Advertisement

Marine Biology

, Volume 35, Issue 1, pp 13–29 | Cite as

Production organique primaire dans un milieu saumâtre eutrophe (Etang de Berre). Effets d'une forte dilution (dérivation des eaux de la Durance)

  • M. Minas
Article

Abstract

14C primary production measurements were made over a period of 5 years (1965–1969, inclusive) in the brackish lake “Etang de Berre”, near Marseilles (France). The diversion of the River Durance into the Etang de Berre took place during this period (March 1966) and introduced an important modification into the organic production ecosystem, mainly through increased and variable freshening, accompanied by substantial nutrient input. The seasonal distribution of production rates displayed 3 bloom periods: the first (short and slight) in spring, the second (the most important as regards intensity and duration) in summer, and the third in autumn (October). Before the diversion of the river in 1965, the carbon-uptake rates in the lake ranged between 25 mg/m2/day in winter and 800 mg/m2/day in summer-autumn, the mean value for the year being 150 g C/m2, which represents 2.5×104 tons of photosynthesized carbon for the whole lake. After the diversion, more than 3000 mg C/m2 day were measured; for 1968, the inclusive uptake rate was 384 g C/m2, representing 6×104 tons of synthesized carbon for the whole lake. Nevertheless, noticeable variations occurred from one year to another. From the annual nutrient input of phosphate to the Etang de Berre through the inflow of Durance waters, the quantity of potentially synthesizable elements has been calculated, in terms of carbon, according to the normal P:C ratio of organic substances; this quantity is called R. The difference between measured production, P, and R gives a measure of the “regenerated” production. This portion of production represented about 80% of the total production before 1968 but only 16% in 1969, a year of maximum fresh-water inflow. This phenomenon could be due to modifications of the ecophysiology of the phytoplankton resulting from the considerable freshening. With increasing nutrient load, eutrophication first occurs, then still greater dilution results in inhibition of production.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Littérature citée

  1. Arthur, C.R. and F.H. Rigler: A possible source of error in the 14C method of mesuring primary productivity. Limnol. Oceanogr. 12, 121–124 (1967)Google Scholar
  2. Blanc, F., B. Coste, H.J. Minas et K.H. Szekielda: Distribution et corrélations des principaux facteurs hydrobiologiques dans un milieu de forte production organique (Etang de Berre). Mar. Biol. 1, 43–55 (1967)Google Scholar
  3. Blanc, F. et M. Leveau: Plancton et eutrophie: aire d'épandage rhodanienne et Golfe de Fos (Traitement mathématique des données), 681 pp. Thèse Doctorat, Université d'Aix-Marseille 1973Google Scholar
  4. Braarud, T.: Salinity as an ecological factor in marine phytoplankton. Physiologia Pl. 4, 28–34 (1951)Google Scholar
  5. —: Cultivation of marine organisms as a means of understanding environmental influences on populations. In: Oceanography, pp 271–298. Ed. by M. Sears. Washington: American Association for the Advancement of Science 1961Google Scholar
  6. Brouardel, J. et E. Rinck: Mesure de la production organique en Mèditerranée, dans les parages de Monaco, à l'aide du 14C. Annls Inst. océanogr., Monaco 40, 111–164 (1963)Google Scholar
  7. Buch, K.: Das Kohlensäure Gleichgewichtssystem im Meerwasser. Merentutkimuslait. Julk. 6, 9–18 (1951)Google Scholar
  8. Dyson, N., H.R. Jitts and B.D. Scott: Technics for measuring oceanic primary production using radioactive carbon. Commonw. scient. ind. Res. Org., Melbourne 18, 1–12 (1965)Google Scholar
  9. Findenegg, I.: Relationship between standing crop and primary productivity. Memorie Ist. ital. Idrobiol. 18 (Suppl.), 271–289 (1965)Google Scholar
  10. Herrera, J. y R. Margalef: Estimacion de la actividad total anadida y de la autoabsorcion en las determinaciones de produccion del fitoplancton con 14C. Investigación pesq. 30, 37–44 (1966)Google Scholar
  11. Jitts, H.R.: Some developments in the measurement of oceanic primary production. Proc. Pacif. Sci. Congr. 10, (1966)Google Scholar
  12. Jonasson, P.M.: Bottom fauna and eutrophication. In: Eutrophication: causes, consequences, correctives, pp 274–305. Washington: National Academy of Sciences 1969Google Scholar
  13. Lorenzen, C.J.: Diurnal variation in photosynthetic activity of natural phytoplankton populations. Limnol. Oceanogr. 8, 52–62 (1963)Google Scholar
  14. Maestrini, S.: Etude de l'influence de quelques facteurs du milieu sur la productivité d'une algue planctonique en culture. Recl. Trav. Stn mar. Endoume 41, 33–108 (1966)Google Scholar
  15. Minas, M.: Résultats d'observations hydrologiques sur l'Etang de Berre années 1965, 1966, 1967. Modification du régime hydrologique par suite du déversement des eaux apportées par la canal de dérivation de la Durance. Cah. océanogr. 22, 73–88 (1970)Google Scholar
  16. Minas, M.: Sur la synthèse et la dégradation de la matière organique dans l'écosystème de l'Etang de Berre-Dynamique et bilans-Rapports avec le régime hydrologique, 339 pp. Thèse Doctorat, Université d'Aix-Marseille 1973Google Scholar
  17. —: Distribution, circulation et évolution des éléments nutritifs, en particulier du phosphore minéral, dans l'Etang de Berre. Influence des eaux duranciennes. Int. Revue ges. Hydrobiol. 59, 509–542 (1974)Google Scholar
  18. Minas, M.: Evolution saisonnière de plusieurs paramètres indicateurs de la biomasse dans les eaux de l'Etang de Berre, et leurs relations. Téthys (Sous presse)Google Scholar
  19. Richards, F.A.: Anoxic versus oxic environments. In: Impingement of man on the oceans, pp 201–217. Ed. by D.W. Hood. New York: Wiley-Interscience 1971Google Scholar
  20. Rhode, W.: Crystallization of eutrophication concepts in Northern Europe. In: Eutrophication: causes, consequences, correctives, pp 50–64. Washington: National Academy of Sciences 1969Google Scholar
  21. Ryther, J.H.: Geographic variations in productivity. In: The Sea, Vol. 2. pp 347–380. Ed. by M.N. Hill. New York: Interscience 1963Google Scholar
  22. Sournia, A.: Recherches sur le phytoplancton et la production primaire dans le canal de Mozambique, 76 pp. Thèse Doctorat, Université de Paris 1968Google Scholar
  23. Steele, J.H.: A comparison of plant production estimates using 14C and phosphate data. J. mar. biol. Ass. U.K. 36, 233–241 (1957)Google Scholar
  24. — and I.E. Baird: Further relation between primary production chlorophyll and particulate carbon. Limnol. Oceanogr. 7, 42–47 (1962)Google Scholar
  25. Steemann Nielsen, E.: The use of radioactive carbon (C14) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer 18, 117–140 (1952)Google Scholar
  26. —: Investigations of the rate of primary production at two Danish light ships in the transition area between the North Sea and the Baltic. Meddr Danm. Fish.-og Havunders. (N.S.) 4 (3), 31–77 (1964)Google Scholar
  27. —: On the determination of the activity in 14C ampoules for measuring primary production. Limnol. Oceanogr. 10 (Suppl.), R247-R252 (1965)Google Scholar
  28. Štěpánek, M.: Limnological study of the Reservoir Sedlice near Zeliv. X. Hydrobioclimatological part: the relation of the sun radiation to the primary production of nannoplankton. Sb. vys. Sk. chem.-technol. Praze 4 (2), 21–130 (1960)Google Scholar
  29. Travers, M.: Le microplancton du Golfe de Marseille: études quantitative, structurale et synécologique; variations spatio-temporelles, 595 pp. Thèse Doctorat, Université d'Aix-Marseille 1971Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. Minas
    • 1
  1. 1.Station Marine d'Endoume, Groupe de Recherches “Production Pélagique”Centre Universitaire de LuminyMarseilleFrance

Personalised recommendations