Advertisement

Marine Biology

, Volume 120, Issue 1, pp 65–80 | Cite as

Comparative study of sub-cuticular bacteria in brittlestars (Echinodermata: Ophiuroidea)

  • J. D. McKenzie
  • M. S. Kelly
Article
  • 88 Downloads

Abstract

Arm tissues from species of brittlestars from the British Isles and North America were examined by light and electron microscopy for the presence of sub-cuticular bacteria (SCB) which were recorded in 17 of the 19 species studied. Three major groups of SCB could be distinguished on the basis of their morphology. The bacterial morphology was not correlated with the host ecology but did appear to be related to the phylogeny of the hosts. Ophiuroids of the same genera had morphologically similar SCB and this was also generally true of species from the same family. This indicates the possibility of co-evolution between the SCB and their hosts. Estimates of SCB load were made for 9 of the species by direct counting and by quantifying the amount of bacterial endotoxin present in the host tissues. SCB numbers varied interspecifically from 3.7×108 to 4.6×109 SCB per gram of ash-free brittlestar arm tissue. Endotoxin values ranged from 5.97 to 285 μg g−1 ash-free arm tissue. Calculations suggest that SCB form at least 0.1 to 1% of the total biomass of the arm tissues. There was considerable intraspecific variation in SCB load. The possible role and significance of SCB is discussed.

Keywords

Biomass Microscopy Electron Microscopy North America Total Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bamford D (1982) Epithelial absorption. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 317–330Google Scholar
  2. Barker M, Kelly MS (1994) The occurrence and transmission of subcuticular bacteria in echinoderm larvae. In: David B (ed) Echinoderms. Proceedings of the 8th International Echinoderm Conference. Balkema, Rotterdam (in press)Google Scholar
  3. Berkeley RCW (1979) Structure and classification of prokaryotic micro-organisms. In: Hawker LE, Linton AH (eds) Micro-organisms: function, form and environment. 2nd edn. Arnold, London, pp 135–175Google Scholar
  4. Bosch C (1976) Sur un noveau type de symbiose chez la Bonellie (Bonellia viridis, Echiurien). C r hebd Séanc Sci, Paris 282: 2179–2182Google Scholar
  5. Bosch I (1992) Symbiosis between bacteria and oceanic clonal sea star larvae in the western North Atlantic Ocean. Mar Biol 114: 495–502Google Scholar
  6. Cameron RA, Holland ND (1983) Electron microscopy of extracellular materials during the development of a seastar, Patiria miniata (Echinodermata; Asteroidea). Cell Tissue Res 234:193–200Google Scholar
  7. Cavanaugh CM, Gardiner SL, Jones MLS, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila; possible chemoautotrophic symbionts. Science, NY 213:340–342Google Scholar
  8. Costerton JW, Ingram JM, Cheng KJ (1974) Structure and function of the cell envelope of Gram-negative bacteria. Bact Rev 38: 87–110Google Scholar
  9. Distel DL, Felbeck H (1987) Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar Biol 96:79–86Google Scholar
  10. Dobson WE (1988) Early post-autotomy tissue regeneration and nutrient translocation in the brittlestar Microphiopholis gracillima (Stimpson) (Echinodermata: Ophiuroidea) Unpublished PhD thesis. University of South Carolina, ColumbiaGoogle Scholar
  11. Domanski PA (1984) Giant larvae: prolonged planktonic larval phase in the asteroid Luidia sarsi. Mar Biol 80:189–195Google Scholar
  12. Endow K, Ohta S (1990) Occurrence of bacteria in the primary oocytes of vesicomyid clam Calyptogena soyoae. Mar Ecol Prog Ser 64:309–311Google Scholar
  13. Felbeck H, Liebezeit G, Dawson R, Giere O (1983) CO2 fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautotrophic bacteria. Mar Biol 75:187–191Google Scholar
  14. Fenchel T, Perry T, Thane A (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protozool 24:154–163PubMedGoogle Scholar
  15. Féral JP (1980) Cuticule et bacteréries associées des épidermes digestif et tégumentaire de Leptosynapta galliennei (Herapath) (Holothuroidea: Apoda). Premiéres données. In: Jangoux M (ed) Echinoderms present and past. Balkema, Rotterdam, pp 285–290Google Scholar
  16. Giere O (1981) The gutless marine oligochaete Phallodrilus leukodermatus. Structural studies on an aberrant tubificid associated with bacteria. Mar Ecol Prog Ser 5:353–357Google Scholar
  17. Giere O, Langheld C (1987) Structural organisation, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar Biol 93:641–650Google Scholar
  18. Grimmer JC, Holland ND (1990) The structure of a sessile, stalkless crinoid (Holopus rangii). Acta zool, Stock 71:61–67Google Scholar
  19. Gustafson RG, Reid RGB (1988) Association of bacteria with larvae of the gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). Mar Biol 97:389–401Google Scholar
  20. Hausmann K (1982). Elektronenmikroskopische Untersuchungen an Anaitides mucosa (Annelida Polychaeta). Cuticula and Cilien, Schleimzellen und Schleimextrusion. Helgoländer wiss Meeresunters 35:79–96Google Scholar
  21. Haygood MG, Distel DL, Herring PJ (1992) Polymerase chain reaction and 16S rRNA gene sequences from the luminous bacterial symbionts of two deep-sea anglerfishes. J mar biol Ass UK 72: 149–159Google Scholar
  22. Holland ND, Grimmer JC, Weigmann K (1991) The structure of the sea lily Calamocrinus diomedae, with special reference to the articulations, skeletal microstructure, symbiotic bacteria, axial organs and stock tissues. Zoomorphology 110:115–132Google Scholar
  23. Holland ND, Nealson KH (1978) The fine structure of the echinoderm cuticle and subcuticular bacteria of echinoderms. Acta zool, Stock 59:169–185Google Scholar
  24. Kaye HR (1991) Sexual reproduction in four Caribbean commercial sponges. II. Oogenesis and transfer of bacterial symbionts. Invert Reprod Dev 19:13–24Google Scholar
  25. Kelly MS, McKenzie JD (1992) The quantification of sub-cuticular bacteria in echinoderms. In: Scalera-Liaci L, Canicattì C (eds) Echinoderm research 1991. Balkema, Rotterdam, pp 225–228Google Scholar
  26. Lesser MP, Blakemore RP (1990) Description of a novel symbiotic bacterium from the brittlestar Amphipholis squamata. Appl envirl Microbiol 56:2436–2440Google Scholar
  27. Levi C, Levi P (1976) Embryogenese de Chondrosia reniformis (Nardo), demosponge ovipare et transmission des bacteries symbiotes. Annls Sci nat (sér Zool) 18:367–380Google Scholar
  28. Levin J, Bang FB (1964) A description of cellular coagulation in the Limulus. Bull Johns Hopkins Hosp 115: p 337Google Scholar
  29. Lutaud G (1969) La nature des corps funiculaires des cellularines bryozoaires cheilostomes. Archs Zool exp gén 110:2–30Google Scholar
  30. Martinez JL (1976) Histologia y ultraestructura de la cuticula de los podios de Ophiothrix fragilis (Echinodermata, Ophiuroidea). Boln R Soc esp Hist nat (Biol) 74:167–181Google Scholar
  31. McKenzie JD (1985) A comparative study of dendrochirote holothurians with special reference to the tentacular anatomy. Unpublished PhD thesis. Queen's University of Belfast, BelfastGoogle Scholar
  32. McKenzie JD (1987) The ultrastructure of the tentacles of eleven species of dendrochirote holothurians studied with special reference to the surface coats and papillae. Cell Tissue Res 248: 187–199Google Scholar
  33. McKenzie JD (1988) The ultrastructure of the tentacles of the apodous holothurian Leptosynapta spp (Holothurioidea: Echinodermata) with special reference to the epidermis and surface coats. Cell Tissue Res 251:387–397Google Scholar
  34. McKenzie JD (1992) Comparative morphology of crinoid tube feet. In: Scalera-Liaci L, Canicattì C (eds) Echinoderm research 1991. Balkema, Rotterdam, pp 73–79Google Scholar
  35. Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc (Ser B) 253:167–171Google Scholar
  36. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer, Sunderland, MassGoogle Scholar
  37. Ott J, Rieger G, Rieger R, Enderes F (1982) New mouthless interstitial worms from the sulphide system: symbiosis with prokaryotes. Pubbl Staz zool Napoli (I: Mar Ecol) 3:313–333Google Scholar
  38. Palincsar EE, Jones WR, Palincsar JS, Glogowski MA, Mastro JL (1989) Bacterial aggregates within the epidermis of the sea anemone Aiptasia pallida. Biol Bull mar biol Lab, Woods Hole 177: 130–140Google Scholar
  39. Paterson GLJ (1985) The deep-sea Ophiuroidea of the North Atlantic Ocean. Bull Br Mus nat Hist (D: Zool) 49:1–162Google Scholar
  40. Pavillon J-F (1976) Action de trois substances supposées ectocrines (riboflavine, acide glutamique, glycine) sur la cinétique du développement de l'oeuf et la croissance de la larve de duex espèces d'échinides: Arbacia lixula et Paracentrotus lividus. Mar Biol 34:67–75Google Scholar
  41. Powell MA, Somero GN (1983) Blood components prevent blood poisoning of respiration of the hydrothermal vent tube worm Riftia pachyptila. Science, NY 219:297–299Google Scholar
  42. Prieur D (1991) Interactions between bacteria and other organisms in the marine environment. Kieler Meeresforsch 8:231–239Google Scholar
  43. Saffo MB (1990) Symbiosis within a symbiosis: intracellular bacteria within the endosymbiotic protist Nephromyces. Mar Biol 107: 291–296Google Scholar
  44. Saffo MB (1992) Invertebrates in endosymbiotic associations. Am Zool 32:557–565Google Scholar
  45. Siebers D (1982) Bacterial—invertebrate interactions in uptake of dissolved organic material. Am Zool 22:723–733Google Scholar
  46. Southward EC (1986) Gill symbionts in thyasirids and other bivalve molluscs. J mar biol Ass UK 66:889–914Google Scholar
  47. Souza Santos H, Sasso WS (1970) Ultrastructural and histochemical studies on the epithelium revestment layer in the tube feet of the starfish Asterina stellifera. J Morph 130:287–296Google Scholar
  48. Temara A, de Ridder C, Kuenen JG, Robertson LA (1993) Sulfide-oxidising bacteria in the burrowing echinoid, Echinocardium cordatum (Echinodermata). Mar Biol 115:179–185Google Scholar
  49. Walker CW, Lesser MP (1989) Nutrition and development of brooded embryos in the brittlestar Amphipholis squamata: do endosymbiotic bacteria play a role? Mar Biol 103:519–530Google Scholar
  50. Watson SW, Novitsky TJ, Quintay HC, Valois FW (1977) Determination of bacterial number and biomass in the marine environment. Appl envirl Microbiol 33:940–954Google Scholar
  51. Weller R, Ward D (1989) Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl envirl Microbiol 55:1818–1822Google Scholar
  52. Welsch U (1984) Hemichordata: In: Bereiter-Hann J, Matoltsy AG, Richards KS (eds) Biology of the integument. Vol 1. Springer Verlag, Berlin, pp 791–799Google Scholar
  53. Wilkinson CR (1984) Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges. Proc R Soc (Ser B) 220:509–517Google Scholar
  54. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archea, Bacteria and Eucarya. Proc natn Acad Sci USA 87:4576–4579Google Scholar
  55. Woollacott RM (1981) Association of bacteria with bryozoan larvae. Mar Biol 65:155–158Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. D. McKenzie
    • 1
  • M. S. Kelly
    • 1
  1. 1.Scottish Association for Marine ScienceOban, ArgyllScotland

Personalised recommendations