Advertisement

Marine Biology

, Volume 120, Issue 1, pp 1–7 | Cite as

Graviperception and motility of three Prorocentrum strains impaired by solar and artificial ultraviolet radiation

  • C. Sebastian
  • R. Scheuerlein
  • D.-P. Häder
Article

Abstract

The effects of solar and artificial ultraviolet radiation on the motility and graviorientation of three strains of the dinoflagellate Prorocentrum were studied. P. micans isolated from the Baltic Sea shows a pronounced negative gravitaxis which switches to a positive one even after short exposure times to either solar or artificial UV irradiation. In constrast P. minimum strains isolated from the Kattegat and the Atlantic coast off Portugal showed only a weak upward orientation. In all three strains the linear swimming velocity decreases after short exposure times and, in addition, the percentage of motile cells in the populations drastically decreases. Removing the ultraviolet component of solar radiation with a cut-off filter prolongs the tolerated exposure times.

Keywords

Radiation Solar Radiation Exposure Time Dinoflagellate Ultraviolet Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batschelet E (1981) Circular statistics in biology. Academic Press, LondonGoogle Scholar
  2. Donkor V, Häder D-P (1991) Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria. Fedn eur microbiol Soc (FEMS) Microbiol Ecol 86:159–168Google Scholar
  3. Eggersdorfer B, Häder D-P (1991 a) Phototaxis, gravitaxis and vertical migrations in the marine dinoflagellate, Prorocentrum micans. Fedn eur microbiol Soc (FEMS) Microbiol Ecol 85:319–326Google Scholar
  4. Eggersdorfer B, Häder D-P (1991 b) Phototaxis, gravitaxis and vertical migrations in the marine dinoflagellates, Peridinium faeroense and Amphidinium caterii. Acta protozool 30:63–71Google Scholar
  5. Ekelund N, Häder D-P (1988) Photomovement and photobleaching in two Gyrodinium species. Pl Cell Physiol 29:1109–1114Google Scholar
  6. Estrada M, Alcataz M, Marrase I (1987) Effect of reversed light gradients on the phytoplankton composition in marine microcosms. Investigación pesq 51:443–458Google Scholar
  7. Freeman H (1974) Computer processing of line-drawing images. Comput Surv 6:57–97Google Scholar
  8. Freeman H (1980) Analysis and manipulation of lineal map data. In: Freeman H (ed) Map data processing. Academic Press, London, pp 151–168Google Scholar
  9. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239Google Scholar
  10. Häder D-P (1987) Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis. Arch Microbiol 147: 179–183Google Scholar
  11. Häder D-P (1988) Ecological consequences of photomovement in microorganisms. J Photochem Photobiol (B: Biol) 1:385–414Google Scholar
  12. Häder D-P (1993) Risks of enhanced solar ultraviolet radiation for aquatic ecosystems. Prog phycol Res 9:1–45Google Scholar
  13. Häder D-P, Brodhun B (1991) Effects of ultraviolet radiation on the photoreceptor proteins and pigments in the paraflagellar body of the flagellate, Euglena gracilis. J Pl Physiol 137:641–646Google Scholar
  14. Häder D-P, Häder M (1988) Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis, by UV-B radiation. Arch Microbiol 150:20–25Google Scholar
  15. Häder D-P, Häder MA (1989 a) Effects of solar UV-B irradiation on photomovement and motility in photosynthetic and colorless flagellates. Envir expl Bot 29:273–282Google Scholar
  16. Häder D-P, Häder MA (1989 b) Effects of solar and artificial radiation on motility and pigmentation in Cyanophora paradoxa. Arch Microbiol 152:453–457Google Scholar
  17. Häder D-P, Häder M (1989 c) Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Cryptomonas. Botanica Acta (Ber dt bot Ges) 102:236–240Google Scholar
  18. Häder D-P, Häder M (1990) Effects of solar radiation on motility, photomovement and pigmentation in two strains of the cyanobacterium, Phormidium uncinatum. Acta protozool 29:291–303Google Scholar
  19. Häder D-P, Häder M (1991) Effects of solar and artificial UV radiation on motility and pigmentation in the marine Cryptomonas maculata. Envir expl Bot 31:33–41Google Scholar
  20. Häder D-P, Häder M, Liu S-M, Ullrich W (1990) Effects of solar radiation on photoorientation, motility and pigmentation in a freshwater Peridinium. Biosystems (Amsterdam) 23:335–343Google Scholar
  21. Häder D-P, Liu S-M (1990 a) Effects of artificial and solar UV-B radiation on the gravitactic orientation of the dinoflagellate, Peridinium gatunense. Fed eur microbiol Soc (FEMS) Microbiol Ecol 73:331–338Google Scholar
  22. Häder D-P, Liu S-M (1990 b) Motility and gravitactic orientation of the flagellate, Euglena gracilis, impaired by artificial and solar UV-B radiation. Curr Microbiol 21:161–168Google Scholar
  23. Häder D-P, Liu S-M (1991) Biochemical isolation and spectroscopic characterization of possible photoreceptor pigments for phototaxis in a freshwater Peridinium. Photochem Photobiol 54: 143–146Google Scholar
  24. Häder D-P, Vogel K (1991) Simultaneous tracking of flagellates in real time by image analysis. J math Biol 30:63–72Google Scholar
  25. Häder D-P, Watanabe M, Furuya M (1986) Inhibition of motility in the cyanobacterium, Phormidium uncinatum, by solar and monochromatic UV irradiation. Pl Cell Physiol 27:887–894Google Scholar
  26. Häder D-P, Worrest RC (1991) Effects of enhanced solar ultraviolet radiation on aquatic ecosystems. Photochem Photobiol 53:717–725Google Scholar
  27. Häder D-P, Worrest RC, Kumar HD (1991) Aquatic ecosystems. In: UNEP Environmental Effects Panel Report. United Nations Environmental Programme, Nairobi, Kenya, pp 30–40Google Scholar
  28. Holmes RW, Williams PM, Eppley RW (1967) Red water in La Jolla Bay, 1964–1966. Limnol Oceanogr 12:503–512Google Scholar
  29. Ignatiades L (1990) Photosynthetic capacity of the surface microlayer during the mixing period. J Plankton Res 12:851–860Google Scholar
  30. Kamykowski D (1981) Laboratory experiments of the diurnal vertical migration of marine dinoflagellates through temperature gradients. Mar Biol 62:57–64Google Scholar
  31. Kinsman R, Ibelings BW, Walsby AE (1991) Gas vesicle collapse by turgor pressure and its role in buoyancy regulation by Anabaena flos-aquae. J gen Microbiol 137:1171–1178Google Scholar
  32. Levandowsky M, Kaneta PJ (1987) Behaviour in dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 360–397Google Scholar
  33. Liu S-M, Häder D-P, Ullrich W (1990) Photoorientation in the freshwater dinoflagellate, Peridinium gatunense Nygaard. Fedn eur microbiol Soc (FEMS) Microbiol Ecol 73:91–102Google Scholar
  34. Madronich S, Björn LO, Iliyas M, Caldwell MM (1991) Changes in biologically active ultraviolet radiation reaching the earth's surface. In: UNEP Environmental Effects Panel Report. United Nations Environmental Programme, Nairobi, Kenya, pp 1–13Google Scholar
  35. Raven JA (1991) Responses of aquatic photosynthetic organisms to increased solar UVB. J Photochem Photobiol (B: Biol) 9:239–244Google Scholar
  36. Taylor WR, Seliger HH, Fastie WG, McElroy WD (1966) Biological and physical observations on a phosphorescent bay in Falmouth harbor, Jamaica. J mar Res 24:28–43Google Scholar
  37. Tirlapur U, Scheuerlein R, Häder D-P (1993) Motility and orientation of a dinoflagellate, Gymnodinium, impaired by solar and ultraviolet radiation. Fedn eur microbiol Soc (FEMS) Microbiol Ecol 102:167–174Google Scholar
  38. Tyler MA, Seliger HH (1978) Annual subsurface transport of a red tide dinoflagellate to its bloom area: winter circulation patterns and organism distributions in the Chesapeake Bay. Limnol Oceanogr 23:227–246Google Scholar
  39. Tyler MA, Seliger HH (1981) Selection for a red tide organism: physiological responses to the physical environment. Limnol Oceanogr 26:310–324Google Scholar
  40. Walsby AE (1987) Mechanisms of buoyancy regulation by planktonic cyanobacteria with gas vesicles. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier Science Publishers, Amsterdam, pp 385–392Google Scholar
  41. Walsby AE, Kinsman R, George KI (1992) The measurement of gas volume and buoyant density in planktonic bacteria. J microbiol Meth 15:293–309Google Scholar
  42. Yentsch CS, Backus RH, Wing A (1964) Factors affecting the vertical distribution of bioluminescence in the euphotic zone. Limnol Oceanogr 9:519–524Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • C. Sebastian
    • 1
  • R. Scheuerlein
    • 1
  • D.-P. Häder
    • 1
  1. 1.Institut für Botanik und Pharmazeutische BiologieFriedrich-Alexander-UniversitätErlangenGermany

Personalised recommendations