Skip to main content
Log in

Species and speciation in poikilothermal animals

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

On the basis of current scientific information related to intraspecific and interspecific variability of eco-physiological properties at the individual (organismic) and subindividual (tissues, cells, and molecules) levels and his own experimental data, the author comes to the conclusion that eco-physiological adaptation is one of the major processes determining speciation. During sequential multi-step adaptation at the most sensitive and plastic levels of organisation (whole organisms and their labile cells and proteins) to changed abiotic (physico-chemical) environmental factors, the latter directly affect the conservative proteins and polynucleotides that maintain the species' genetic information. Transition from phenotypical to genotypical changes may be achieved if the organisms have attained the limit of their phenotypical plasticity, via selection at cellular and molecular levels. The high rate of cellular mytotic division and a promiment rise in the speed of interrelated DNA-RNA protein synthesis under sudden and profound environmental changes may account for the high rates of speciation indicative of cataclysmic climatic changes. Evolutionary morphological changes are considered to follow physiological changes. The adaptive nature of morphological peculiarities in higher taxonomic categories (type, class, order, family; more seldom genus) may be accounted for by the selection of phenotypes possessing morphological peculiarities best suited to the ecological niches of the species concerned. These peculiarities (although often neutral to physiological changes that have determined the speciation) are transferred from species to species, manifesting both historical relationship and morphological unity. The suggested scheme of speciation is in accord with the conceptions of the intermittent character of speciation, which can proceed only if extreme, directed, climatic changes cover a larger portion of the species' area. As the organisms' organisation becomes more complex during phylogenesis, intraspecific variability decreases; this trend manifests itself in the progressive stabilization of body shape and other morphological properties, and in the increase of eco-physiological stability of cells and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adensamer, E.: Über den Verlust der Leitfähigkeit des Nervens ischiadicus durch Erwärmung bei Lacertiliern. Z. vergl. Physiol. 24, 642–645 (1934)

    Google Scholar 

  • Alderdice, D.: Factor combinations: responses of marine poikilotherms to environmental factors acting in concert. In: Marine ecology, Vol. I. Environmental factors, Pt. 3. pp 1659–1722. Ed. by O. Kinne. London: Wiley Interscience 1972

    Google Scholar 

  • Alexandrov, V. J.: On relations between thermostability of protoplasm and temperature conditions of existence. [Russ.]. Dokl. Akad Nauk SSSR 83, 149–152 (1952)

    Google Scholar 

  • —: Cytophysiological analysis of thermostability of plant cells and some problems of cytoecology. [Russ.]. Bot. Zh., Kÿyiv 41, 939–961 (1956)

    Google Scholar 

  • —: Cytophysiological and cytoecological investigations of resistance of plant cells towards the action of high and low temperature. [Russ.]. Trud\-y bot. Inst. Akad. Nauk SSSR (Exp. Bot.) 16, 234–280 (1963)

    Google Scholar 

  • —: The problem of autoregulation in cytology. II. Reparation ability of cells. [Russ.]. Citologija 6, 133–151 (1964)

    Google Scholar 

  • —: The problem of autoregulation in cytology. III. Reactive increase of cell stability to the action of injuring agents (adaptation). [Russ.]. Citologija 7, 4441–4447 (1965)

    Google Scholar 

  • — and A. Yazkulyev: Thermal hardening of plant cells in natural conditions. [Russ.]. Citologija 3, 74–79 (1961)

    Google Scholar 

  • Allen, M. B.: The dynamic nature of thermophily. J. gen. Physiol. 33, 205–214 (1950)

    Google Scholar 

  • Altukhov, J. P.: Cytophysiological and serological analysis of intraspecific differentiation of “stavrid” fish of the Black Sea. [Russ.]. In: The cell and environmental temperature, pp 135–137. Ed. by A. S. Trochin. Moscow: Academy of Sciences 1964

    Google Scholar 

  • Amosova, J. S.: Selection of the blue meat fly Calliphora erythrocephala by the character of thermostability of muscle tissue. [Russ.]. In: Variability in cellular heat resistance of animals in ontogenesis and phylogenesis, pp 66–70. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1967

    Google Scholar 

  • Andronikov, V. B.: Thermostability of the sex cells of poikilothermic animals. [Russ.]. In: The cell and environmental temperature, pp 265–267. Ed. by A. S. Troshin. Moscow: Academy of Sciences 1964

    Google Scholar 

  • —: Heat resistance of sexual cells and embryos of poikilothermic animals. [Russ.]. In: Heat resistance of cells of animals, pp 124–139. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1965

    Google Scholar 

  • —: The character of changes in thermostability of embryos of poikilotherms at early stages of ontogenesis. [Russ.]. In: Variability in cellular heat resistance of animals in ontogenesis and phylogenesis, pp 3–12. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1967

    Google Scholar 

  • Appellöf, A.: Invertebrate bottom fauna of the Norwegian Sea and North Atlantic. In: The depth of the ocean, pp 457–560. Ed. by F. Murray and J. Hjort. London: Macmillan 1912

    Google Scholar 

  • Arronet, N. I.: Cell and organism thermostability in Rana temporaria L. and Unio crassus Phil. in various seasons of the year. [Russ.]. Citologija 1, 443–449 (1959)

    Google Scholar 

  • Battle, H. I.: Effect of extreme temperatures on muscle and nerve tissue in marine fishes. Trans. R. Soc. Can. (Sect. III) 20, 127–143 (1926)

    Google Scholar 

  • Berger, V. J. and V. V. Lukanin: Suppression by actinomycin D of the acclimation ability of larvae of Aurelia aurita (L.) when the salinity of the medium is changed. [Russ.]. Dokl. Akad. Nauk SSSR 202 (1), 205–207 (1972)

    Google Scholar 

  • Beament, J. M.: The role of physiology adaptation and competition among animals. In: Symposia of the Society for Experimental Biology No. 15. Mechanisms in biological competition, pp 82–93. Cambridge: University Press 1961

    Google Scholar 

  • Biebl, R.: Protoplasmatische Ökologie der Pflanzen. Wasser und Temperatur. Protoplasmatologia 12, 1–344 (1962)

    Google Scholar 

  • Bullock, T. H.: The objectives of studying physiology as function of latitude and longitude. Année biol. 33, 199–203 (1957)

    Google Scholar 

  • Chernokozheva, I. S.: A study on thermostability of muscles and muscle models in connection with the growth of frog. [Russ.]. In: Variability in cellular heat resistance of animals in ontogenesis and phylogenesis, pp 13–19. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1967

    Google Scholar 

  • Crosby, J. L.: The evolution and nature of dominance. J. theor. Biol. 5, 35–51 (1963)

    Google Scholar 

  • Davies, Y., W. Gilbert and L. Gorini: Streptomycin, suppression, and the code. Proc. natn. Acad. Sci. U.S.A. 51, 883–890 (1964)

    Google Scholar 

  • Dobzhansky, T.: Mendelian populations and their evolution. Am. Nat. 84, 401–418 (1950)

    Google Scholar 

  • —: Genetics and the origin of species, 3rd ed. 446 pp. New York: Columbia University Press 1951

    Google Scholar 

  • —: Variation and evolution. Proc. Am. phil. Soc. 103, 252–263 (1959)

    Google Scholar 

  • Dogiel, V. A.: Monographie der Familie Ophryoscolecidae, I. Arch. Protistenk. 59, 1–282 (1927)

    Google Scholar 

  • Dregolskaya, I. N.: The thermostability of ciliary epithelium cells of the Black Sea actinians in different seasons. [Russ.]. Citologija 4, 538–544 (1962)

    Google Scholar 

  • —: On the possibility of the use of cell thermostability as a criterion of species in Coeienterata and worms. [Russ.]. In: Problems of cytoecology of animals, pp 134–144. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1963

    Google Scholar 

  • —: A study of the cell thermostability of some Coelenterata. [Russ.]. In: The cell and environmental temperature, pp 163–166. Ed. by A. S. Troshin. Moscow: Academy of Sciences 1964

    Google Scholar 

  • —: The relation between the thermostability level of muscle tissue of the fresh-water molluscs Lynnaea peregra f. ovata Drap. and rearing temperature. [Russ.]. Citologija 12, 1555–1560 (1968)

    Google Scholar 

  • Dubowsky, N. V.: Significance of natural selection in the creation of local forms and further divergence of Ostracoda. [Russ.]. Zh. obshch. Biol. 2, 169–192 (1941)

    Google Scholar 

  • Dzhamusova, T. A. and I. M. Pashkova: Some physiological and biochemical indices of heat injury in hibernating muscles and spawning frogs. [Russ.]. In: Variability in cellular heat resistance of animals in ontogenesis and phylogenesis, pp 27–36. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1967

    Google Scholar 

  • Ehrlich, P. R. and R. W. Holm: The process of evolution, 330 pp. New York: McGraw-Hill Co. 1963

    Google Scholar 

  • Eisentraut, M.: Haben alle Warmblüter eine konstante Körpertemperatur? Umschau 55 (23), 719–721 (1955)

    Google Scholar 

  • Friedman, S. M. and L. B. Weinstein: Polyribonucleotide stimulation of amino acid incorporation in a subcellular system derived from a thermophilic bacterium. Fedn Proc. Fedn Am. Socs exp. Biol. 23 (2), p. 164 (1964)

    Google Scholar 

  • Friedrich, L.: Experimentelle Untersuchungen zum Problem zellulärer nichtgenetischer Resistenzänderungen bei der Miesmuschel Mytilus edulis L. Kieler Meeresforsch. 23, 105–126 (1967)

    Google Scholar 

  • Gause, G. F.: The problem of stabilizing selection. [Russ.]. Zh. obshch. Biol. 2, 193–209 (1941)

    Google Scholar 

  • Glushankova, M. A.: Environmental temperature and thermostability of actomyosin, alkaline phosphatase and adenilaktinase of poikilotherms. [Russ.]. In: Variability in cellular heat resistance of animals in ontogenesis and phylogenesis, pp 126–141. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1967

    Google Scholar 

  • — and I. S. Chernokozheva: Thermostability of muscle tissue and some tissue proteins of tadpoles of the grass frog in connection with the temperature of an artificial environment. [Russ.]. In: Heat resistance of cells of animals, pp 153–160. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1965

    Google Scholar 

  • Golikov, A. N.: Influence of external environmental factors upon intraspecific variability in Neptunea arthritica (Bernardi) and Littorina squalida Brod. et Sow. [Russ.]. Zool. Zh. 33, 1335–1343 (1959)

    Google Scholar 

  • —: Gastropods of the genus Neptunae Bolton. [Russ.]. Fauna SSSR 1, 1–127 (1963)

    Google Scholar 

  • — and N. L. Tzvetkova: The ecological principle of evolutionary reconstruction as illustrated by marine animals. Mar. Biol. 14, 1–9 (1972)

    Google Scholar 

  • Grainger, J. N. R.: First stage in the adaptation of poikilotherms to temperature change. In: Physiological adaptation, pp 79–91. In: Proceedings of a Symposium held in Woods Hole, Mass., 5–6 Sept., 1957. Ed. by C. L. Prosser. Washington, D.C.: Society of General Physiology 1958

    Google Scholar 

  • Gross, F. J.: Der Einfluß der Oberflächengestalt der Erde auf die Ausbildung verschiedener Arten und Rassen im Tierreich. I. Allgemeines zur Makroevolution. Ent. Z. Frankf. a. M. 72 (23), 253–259 (1962)

    Google Scholar 

  • Hagen, P. O. and A. H. Rose: Studies on the biochemical basis of low maximum temperature in a psychrophilic cryptococcus. J. gen. Microbiol. 27, 88–99 (1962)

    Google Scholar 

  • Irlina, J. S.: Alteration of thermostability of some free-living Protozoa under the influence of the preceding temperature regime. [Russ.]. Citologija 22, 227–234 (1960)

    Google Scholar 

  • Ivleva, I. V.: The relation of the tissue heat-resistance of polychaetes to osmotic and temperature conditions of the environment. In: The cell and environmental temperature, pp 158–162. Ed. by A. S. Troshin. Moscow: Academy of Sciences 1964

    Google Scholar 

  • — and M. I. Popenkina: Alteration of indices of thermal sensibility of polychaetes under acclimation temperature conditions. [Russ]. In: Biol. issled. Chernogo Morja i ego promyslov. resursov, pp 214–219. Ed. by V. A. Vodjanicky. Moscow: Nauka 1968

    Google Scholar 

  • Jennings, H.: Genetics of the Protozoa. Biblphia genet. 5, 105–330 (1929)

    Google Scholar 

  • Kamshilov, M. M.: On “system” and “cellular” adaptation. [Russ.]. Trud\-y murmansk. morsk. biol. Inst. 2, 226–235 (1960)

    Google Scholar 

  • —: The importance of phenotypes in evolution. II. Interaction of phenotypes. [Russ.]. Genetics (USSR) 4, 135–144 (1968)

    Google Scholar 

  • King, J. S.: Genetic implications in the origin of higher levels of organisations. Syst. Zool. 14, 249–258 (1965)

    Google Scholar 

  • Kinne, O.: Zur Biologie und Physiologie von Gammarus duebeni Lillj. I. Z. wiss. Zool. 157, 427–491 (1953)

    Google Scholar 

  • Kinne, O.: A programmatic study of comparative biology of marine and brackish water animals. In: Colloques int. Biol. mar. Stn biol. Roscoff, pp 87–92 (1956)

  • —: Über die Reaktion erbgleichen Coelenteratengewebes auf verschiedene Salzgehalts- und Temperaturbedingungen. Zool. Jb. (Abt. allg. Zool. Physiol. Tiere) 67, 407–486 (1958)

    Google Scholar 

  • —: Irreversible nongenetic adaptation. Comp. Biochem. Physiol. 5, 265–282 (1962)

    Google Scholar 

  • —: Adaptation, a primary mechanism of evolution. In: Phylogeny and evolution of Crustacea, pp 27–50. Ed. by H. B. Whittington and W. D. I. Rolfe. Cambridge, Mass.: Museum of Comparative Zoology 1963a

    Google Scholar 

  • —: The effects of temperature and salinity on marine and brackish water animals. I. Temperature. Oceanogr. mar. Biol. A. Rev. 1, 301–340 (1963b)

    Google Scholar 

  • —: The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature-salinity combinations. Oceanogr. mar. Biol. A. Rev. 2, 281–339 (1964a)

    Google Scholar 

  • —: Non-genetic adaptation to temperature and salinity. Helgoländer wiss. Meeresunters. 9, 433–458 (1964b)

    Google Scholar 

  • —: Temperature: general introduction. In: Marine ecology, Vol. 1. Environmental factors, Pt. 1. pp 321–346. Ed. by O. Kinne. London: Wiley Interscience 1970a

    Google Scholar 

  • —: Temperature: animals-invertebrates. In: Marine ecology, Vol. 1. Environmental factors, Pt. 1. pp 407–514. Ed. by O. Kinne. London: Wiley Interscience 1970b

    Google Scholar 

  • —: Salinity: animals-invertebrates. In: Marine ecology, Vol. 1. Environmental factors, Pt. 2. pp 821–995. Ed. by O. Kinne. London: Wiley Interscience 1971

    Google Scholar 

  • —: Pressure: general introduction. In: Marine ecology. Vol. 1. Environmental factors, Pt. 3. pp 1323–1360. Ed. by O. Kinne. London: Wiley Interscience 1972

    Google Scholar 

  • Kohn, A. J.: Problems of speciation in marine invertebrates. In: Perspectives in marine biology, pp 571–588. Ed. by A. A. Buzzati-Traverso. Berkley, Los Angeles: University of California Press 1958

    Google Scholar 

  • Kusakina, A. A.: On the correspondence between muscles and cholinesterase thermostability and the temperature factor of species environment of some fishes. [Russ.]. Citologija 4, 68–71 (1962)

    Google Scholar 

  • —: Species differences in heat resistance of protoplasmic proteins. [Russ.]. In: Problems of cytoecology of animals, pp 169–188. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1963

    Google Scholar 

  • —: Thermostability of adolase and cholinesterase in closely related species of poikilotherms. [Russ.]. In: Variability in cellular heat resistance of animals in ontogenesis and phylogenesis, pp 142–148. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1967

    Google Scholar 

  • — and E. D. Skholl: Thermostability of erythrocytes and derivatives of hemoglobin of four species of monkeys of the genus Macaca. [Russ.]. Citologija 5, 253–257 (1963)

    Google Scholar 

  • Lagerspetz, K. Y. H. and R. Tirri: Transmitter substances and temperature acclimation in Anadonta (Pelecypoda). Suomal. eläin-ja kasvit. Seur. van. Julk. 5, 396–400 (1968)

    Google Scholar 

  • Lamotte, M.: Polymorphism of natural populations of Cepaea nemoralis. Cold Spring Harb. Symp. quant. Biol. 24, 65–86 (1959)

    Google Scholar 

  • Lange, O. L.: Die Hitzeresistanz einheimischer Sommer- und Wintergrüner Pflanzen im Jahreslauf. Planta 56, 666–689 (1961)

    Google Scholar 

  • Lavocat, R.: Evolution biologique et information. In: Information and Prediction Science, pp 237–251. Ed. by S. J. Dockx and P. Bernays. New York: Academic Press 1965

    Google Scholar 

  • Lark, K. G.: Regulation of biosynthesis of DNA in the cell. In: Molecular genetics, Vol. 1. [Russ.]. pp 168–225. Ed. by J. H. Taylor. Moscow: Mir 1964

    Google Scholar 

  • Licht, P.: The temperature dependence of myosin-denosin triphosphatase and alkaline phosphatase in lizards. Comp. Biochem. Physiol. 12, 331–340 (1964)

    Google Scholar 

  • Lopez-Ochoterena, E.: Comentarios sobre el concepto moderno de especie y su aplicación a los protazoarios ciliados. Revta Soc. mex. Hist. nat. 28, 157–159 (1967)

    Google Scholar 

  • Lutova, M. I., N. L. Feldmann and V. P. Drobyshev: Alteration of temperature stability of cells of marine algae according to temperature conditions of the environment. Citologija 10, 1538–1545 (1968)

    Google Scholar 

  • —, I. G. Zavadskaya, A. T. Luknitskaya and N. L. Feldman: Temperature adaptation of cells of marine and freshwater algae. [Russ.]. In: The cell and environmental temperature, pp 115–119. Ed. by A. S. Troshin. Moscow: Academy of Sciences 1964

    Google Scholar 

  • Mayr, E.: Animal species and evolution, [Russ.]. 597 pp. Moscow: Mir 1968. [Transl. from Engl. version, published in 1965]

    Google Scholar 

  • Makhlin, E. E.: Studies on succinic dehydrogenase thermostability of muscle homogenates of Rana temporaria L. at different levels of muscle thermostability. [Russ.]. In: Heat resistance of cells of animals, pp 119–125. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1965

    Google Scholar 

  • Matutani, K.: Studies on the heat resistance of Tigriopus japonicus. Publs Seto mar. biol. Lab. 9, 379–384 (1961)

    Google Scholar 

  • Miklucho-Maklai, N. N.: Über einige Schwämme des Nördlichen Stillen Ozeans und des Eismeeres. Zap. imp. Akad. Nauk 15 (3), 1–24 (1870)

    Google Scholar 

  • Orr, P. R.: Heat death. II. Differential response of entire animals (Rana pipiens) and several organ systems. Physiol Zoöl. 28, 294–302 (1955)

    Google Scholar 

  • Orton, J. H.: Sea temperature, breeding and distribution in marine animals. J. mar. biol. Ass. U.K. 12, 339–366 (1920)

    Google Scholar 

  • Osipov, D. V.: The heat resistance of stocks of Paramecium caudatum, obtained from different natural populations. [Russ.]. Vest. leningr. gos. Univ. 3, 107–112 (1966)

    Google Scholar 

  • Pampapathi Rao, K.: Some biochemical mechanisms of low temperature acclimation in tropical poikilotherms. [Russ.]. In: The cell and environmental temperature, pp 73–80, Ed. by A. S. Troshin. Moscow: Academy of Sciences 1964

    Google Scholar 

  • Pashkova, I. M.: Relationship between muscle thermostability and activity of the thyroid gland of Rana temporaria L. at different seasons of the year. [Russ.]. In: Heat resistance of cells of animals, pp 82–98. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1965

    Google Scholar 

  • Poljansky, G. I.: Temperature adaptation in Infusoria. 1. Relation of heat resistance of Paramecium caudatum to the temperature conditions of existence. [Russ.]. Zool. Zh. 36, 1630–1645 (1957)

    Google Scholar 

  • —: Temperature adaptation in Infusoria. 2. Change in resistance to high and low temperature in Paramecium caudatum at low temperature cultivation. [Russ.]. Citologija 1, 714–727 (1959)

    Google Scholar 

  • — and A. A. Strelkov: Experimental investigation of variability in some Ophryoscolecidae. [Russ.]. Trud\-y petergof. biol. Inst. 16, 44–134 (1938)

    Google Scholar 

  • —, K. M. Sukhanova, V. A. Sopina and A. L. Judin: Stability of Amoeba proteus to the action of lethal temperature and ethyl alcohol. [Russ.]. In: Variability in cellular heat resistance of animals in ontogenesis and phylogenesis, pp 43–62. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1967

    Google Scholar 

  • Precht, H.: Concepts of the temperature adaptation of unchanging reaction systems of cold-blooded animals. In: Physiological adaptation, pp 50–78. Ed. by C. L. Prosser. New York: Ronald Press Co. 1958

    Google Scholar 

  • —: Untersuchungen über Resistenzadaptation einiger Organfunktionen von Warmwasserfischen gegenüber extremen Temperaturen. Z. vergl. Physiol. 42, 365–382 (1959)

    Google Scholar 

  • —: A survey of experiments on resistance adaptation. [Russ.]. In: The cell and environmental temperature, pp 206–213. Ed. by A. S. Troshin. Moscow: Academy of Sciences 1964

    Google Scholar 

  • Prosser, C. L.: Physiological variation in animals. Biol. Rev. 30, 229–262 (1955)

    Google Scholar 

  • —: Perspectives of adaptation; theoretical aspects. Sect. 4. Adaptations to the environment. In: Handbook of physiology, Vol. 2. pp 1–1056. Ed. by D. B. Dill. Washington: Williams Wilkins 1964

    Google Scholar 

  • Read, K. R. H.: Thermal inactivation of aspartic/glutamic transaminase from species of bivalve molluscs from the sublittoral and intertidal zones. Comp. Biochem. Physiol. 9, 161–180 (1963)

    Google Scholar 

  • —: Comparative biochemistry of adaptations of poikilotherms to the thermal environment. Occ. Publs Graduate School of Oceanogr., Univ. Rhode Island 2, 39–47 (1964)

    Google Scholar 

  • Reshöft, K.: Untersuchungen zur zellulären osmotischen und thermischen Resistenz verschiedener Lamellibranchier der deutschen Küstengewässer. Kieler Meeresforsch. 17, 65–84 (1961)

    Google Scholar 

  • Robson, G. C. and O. W. Richards: The variation of animals in nature, 425 pp. London: Longmans Green Press 1936

    Google Scholar 

  • Runnström, A.: Über die Thermopathie der Fortpflanzung und Entwicklung mariner Tiere in Beziehung zu ihrer geographischen Verbreitung. Bergens Mus. Årb. (Naturv. Rekke) 2, 1–67 (1927)

    Google Scholar 

  • —: Weitere Studien über die Temperaturanpassung der Fortpflanzung und Entwicklung mariner Tiere. Bergens Mus. Årb. 10, 1–46 (1929)

    Google Scholar 

  • Schlieper, C.: Genotypische und phänotypische Temperatur-und Salzgehalts-Adaptationen bei marinen Bodenvertebraten der Nord- und Ostsee. Kieler Meeresforsch. 13, 180–185 (1960)

    Google Scholar 

  • —: Cellular ecological adaptations and reactions, demonstrated by surviving isolated gill tissues of bivalves. [Russ.]. In: The cell and environmental temperature, pp 129–135. Ed. by A. S. Troshin. Moscow: Academy of Sciences 1964

    Google Scholar 

  • —: Genetic and nongenetic cellular resistance adaptation in marine invertebrates. Helgoländer wiss. Meeresunters. 14, 482–502 (1966)

    Google Scholar 

  • —, H. Flügel and J. Rudolf: Temperature and salinity relationship in marine bottom invertebrates. Experientia 16, 470–474 (1960)

    Google Scholar 

  • Schmalhausen, I. I.: Organism as something entire individual and historie development, [Russ.]. 194 pp. Moscow-Leningrad: Academy of Sciences 1938

    Google Scholar 

  • —: Factors of evolution, [Russ.]. 396 pp. Moscow-Leningrad: Academy of Sciences 1946

    Google Scholar 

  • Schwenke, H.: Untersuchungen zur Temperaturresistenz mariner Algen der westlichen Ostsee. I. Das Resistenzverhalten von Tiefenrotalgen bei ökologischen und nichtökologischen Temperaturen. Kieler Meeresforsch. 15, 34–50 (1959)

    Google Scholar 

  • Seravin, L. N., I. I. Skoblo and D. V. Osipov: The influence of thermal adaptation on enzymic thermostability of Paramecium caudatum. [Russ.]. In: Heat resistance of cells of animals, pp 161–170. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1965

    Google Scholar 

  • Shlachter, N. A.: Thermostability of muscles of frog in different seasons of the year. [Russ.]. Citologija 31, 95–99 (1961)

    Google Scholar 

  • Simpson, G. G.: Principles of animal taxonomy, 247 pp. New York: Columbia University Press 1961

    Google Scholar 

  • Skholl, E. D.: Thermostability of muscles of closely related species and subspecies of rodents. [Russ.]. Citologija 2, 692–698 (1960)

    Google Scholar 

  • —: On the increase of stability of isolated tissues of mammals to temperature. [Russ.]. In: Problems of cytoecology of animals, pp 220–229. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1963

    Google Scholar 

  • —: Seasonal changes in thermostability of muscles and actomyosin of Citellus pygmaeus Pall. [Russ.]. In: Heat resistance of cells of animals, pp 106–114. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1965

    Google Scholar 

  • —: Correlation between initial level of thermostability of isolated ciliated epithelium of mussels and alteration of this index under influence of thermal action. [Russ.]. Ecologia 6, 69–73 (1971)

    Google Scholar 

  • Smith, J. M.: Evolution in sexual and asexual populations. Am. Nat. 102, 464–473 (1968)

    Google Scholar 

  • Sopina, V. A.: Intraclone differences in thermostability of Amoebae. Citologija 10, 207–217 (1968)

    Google Scholar 

  • Taylor, J. H.: Replication and organization of DNA in chromosomes. [Russ.]. In: Molecular genetics, pp 78–125. Ed. by J. H. Taylor. Moscow: Mir 1964

    Google Scholar 

  • Thorson, G.: The larval development, growth and metabolism of arctic marine bottom invertebrates, compared with those of other seas. Meddr Grønland 100, 1–155 (1936)

    Google Scholar 

  • —: Reproduction and larval ecology of marine invertebrates. Biol. Rev. 25, 1–45 (1950)

    Google Scholar 

  • Ushakov, B. P.: Thermostability of muscles of mussels and leeches in connection with conditions of existence of species. [Russ.]. Zool. Zh. 35, 935–964 (1956)

    Google Scholar 

  • —: Heat resistance of tissues as a specific character of poikilothermic animals. [Russ.]. Zool. Zh. 38, 1291–1302 (1959)

    Google Scholar 

  • —: On some disputable questions of cytoecology. [Russ.]. Citologija 3, 455–488 (1961)

    Google Scholar 

  • —: Changes of cellular heat resistance in ontogenesis and the problem of conservation of cells of higher poikilothermal animals. [Russ.]. In: Problem of cytoecology of animals, pp 21–42. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1963

    Google Scholar 

  • —: Thermostability of cells and proteins of poikilotherms and its significance in speciation. Physiol. Rev. 44, 518–560 (1964)

    Google Scholar 

  • —: The problem of associated changes in protein thermostability during the process of speciation. [Russ.]. Citologija 7, 467–480 (1965)

    Google Scholar 

  • — and A. A. Kusakina: Lability and conservation nature of adaptation of animal cells discovered at the protein level. [Russ.]. Citologija 2, 428–441 (1960)

    Google Scholar 

  • —, I. M. Pashkova and I. S. Chernokozheva: Change of heat resistance of frog tadpole organism and muscular tissue during thermal acclimation as stabilizing adaptation. [Russ.]. Dokl. Akad. Nauk SSSR 203, 935–938 (1972)

    Google Scholar 

  • Vernberg, F. J., C. Schlieper and D. E. Schneider: The influence of temperature and salinity on ciliary activity of excised gill tissue of molluscs from North Carolina. Comp. Biochem. Physiol. 8, 271–285 (1963)

    Google Scholar 

  • Vinogradova, A. N.: Stability to heating of actomyosin and myosin of two species of frogs. [Russ.]. In: Heat resistance of cells of animals. pp 188–192. Ed. by B. P. Ushakov. Moscow: Academy of Sciences 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. E. Vinogradov, Moscow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golikov, A.N. Species and speciation in poikilothermal animals. Mar. Biol. 21, 257–268 (1973). https://doi.org/10.1007/BF00381082

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00381082

Keywords

Navigation