Skip to main content
Log in

The work of fracture in semiductile polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The work to fracture in tension double-notched samples of some semiductile polymeric materials (rigid PVC, Orgalloy and Ultranyl) has been measured as a function of the ligament length. It was established that the work of fracture was proportional to the extent of the plastic zone that developed in the ligament area during crack propagation. It is proposed that the total energy density is made up of two terms, one distributed all over the plastic zone and the other localized in the vicinity of the fracture path. It is then shown that a linear relationship exists between the specific work of fracture and the ligament size, provided the height of the plastic zone linearly depends on the ligament length. The linear extrapolation of the specific work of fracture to nil ligament, yields a value that coincides with J IC and therefore can be treated as a critical parameter. It is also shown that, at large ligaments, the dependence of the specific work of fracture on the ligament length reflects the post-yield behaviour of the material and it is influenced by the tendency of the height of the plastic zone to level off. Consequently, no specific meaning can be given to quantities obtained, according to the essential work of fracture theory, in the large ligament region, e.g. ligaments larger than three to five times the sample thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Irwin, J. Appl. Mech. Trans. ASME 24 (1957) 361.

    Google Scholar 

  2. Idem 3 (1964) 65.

    Google Scholar 

  3. A. A. Griffith, Phil. Trans. R. Soc. A 221 (1920) 163.

    Google Scholar 

  4. E. Orowan, Trans. Inst. Eng. Shipbuilders Scotland 89 (1945) 165.

    CAS  Google Scholar 

  5. J. R. Rice, J. Appl. Mech. Trans. ASME 35 (1968) 379.

    Article  Google Scholar 

  6. D. Broek, in “Elementary Engineering Fracture Mechanics”, Ch. 9, (Martinus Nijhoff, The Hague, 1984).

    Google Scholar 

  7. W. N. Chung and J. G. Williams, in “Elastic-Plastic Fracture Test Methods: The User's Experience”, Vol. 2, ASTM STP 1114, edited by J. A. Joyce (American Society for Testing and Materials, Philadelphia, PA, 1991) p. 230.

    Google Scholar 

  8. K. B. Broberg, Int. J. Fract. 4 (1968) 11.

    Article  Google Scholar 

  9. Idem, J. Mech. Phys. Solids 19 (1971) 407.

    Article  Google Scholar 

  10. Idem, ibid., J. Mech. Phys. Solids 23 (1975) 215.

    Article  Google Scholar 

  11. B. Cotterell and J. K. Reddell, Int. J. Fract. 13 (1977) 267.

    CAS  Google Scholar 

  12. A. H. Priest and B. Holmes, ibid. 17 (1981) 277.

    Article  CAS  Google Scholar 

  13. Y. M. Mai and B. Cotterell, ibid. 24 (1984) 229.

    Article  Google Scholar 

  14. Idem, Eng. Fract. Mech. 21 (1985) 123.

    Article  Google Scholar 

  15. Idem, Int. J. Fract. 30 (1986) R37.

    Google Scholar 

  16. M. P. Wnuk and D. T. Read, ibid. 31 (1986) 161.

    Article  Google Scholar 

  17. Y. W. Mai and B. Cotterell, ibid. 32 (1986) 105.

    Article  CAS  Google Scholar 

  18. Y. M. Mai, B. Cotterell, R. Horlyck and G. Vigna, Polym. Eng. Sci. 27 (1987) 804.

    Article  CAS  Google Scholar 

  19. A. S. Saleemi and J. A. Nairn, ibid. 30 (1990) 211.

    Article  CAS  Google Scholar 

  20. W. Y. F. Chaw and J. G. Williams, in “Proceedings of the 8th International Conference on Deformation, Yield and Fracture of Polymers”, Cambridge, April 1991, paper 23/1 (Plastus Rubber Inst. London, 1991).

    Google Scholar 

  21. Y. W. Mai and P. Powell, J. Polym. Sci. B Polym. Phys. 29 (1991) 785.

    Article  CAS  Google Scholar 

  22. K. Dijkstra, PhD thesis, University of Twente (1993).

  23. D. D. Huang, in “Elastic-Plastic Fracture Test Methods: The User's Experience”, Vol. 2, ASTM STP 1114, edited by J. A. Joyce (American Society for Testing and Materials, Philadelphia, PA, 1991) p. 290.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levita, G., Parisi, L. & Marchetti, A. The work of fracture in semiductile polymers. Journal of Materials Science 29, 4545–4553 (1994). https://doi.org/10.1007/BF00376277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376277

Keywords

Navigation