Skip to main content
Log in

Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the Ti+C system

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ignition phenomena and the reaction mechanism of the self-propagating high-temperature synthesis reaction of titanium and carbon powders were experimentally investigated. When using coarse graphite powders (<325 mesh) as the carbon source, the ignition temperature ranged from 1650–1720‡C and was independent of the C/Ti ratio. The ignition temperature could be significantly lowered by using finer graphite powders (e.g. 1400‡C for <1 Μm powder). When using carbon black as the carbon source, the ignition temperature ranged from 1050–1475‡C and was dependent on the C/Ti ratio. The ignition was confirmed in this study to be controlled by the rate of the surface reaction between titanium and carbon which, in turn, was determined by the contact surface area between them. The fractured surfaces of the products showed two different types of morphology, i.e. groups of grains similar to sintered bodies and agglomerated fine particles. The relative quantities of the two types of morphology depended on the type of carbon used, the C/Ti ratio, the particle size of graphite and the density of the reactant pellet. Possible reaction mechanisms have been proposed on the basis of the experimental observations of the ignition phenomena and the product morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Walton and N. E. Poulos, J. Am. Ceram. Soc. 42 (1959) 40.

    Article  CAS  Google Scholar 

  2. A. G. Merzhanov and I. P. Borovinskaya, Dokl. Akad. Nauk. SSSR (Chem.) 204 (1972) 366.

    CAS  Google Scholar 

  3. I. P. Borovinskaya, A. G. Merzhanov, N. P. Nov. Ikov and A. K. Filonenko, Combust. Explos. Shock Waves 10 (1974) 2.

    Article  Google Scholar 

  4. A. G. Merzhanov, A. K. Filonenko and I. P. Borovinskaya, Dokl. Akad. Nauk. SSSR (Chem.) 208 (1973) 892.

    CAS  Google Scholar 

  5. A. G. Merzhanov, G. G. Karyuk, I. P. Borovinskaya, V. K. Prokudina and E. G. Dyad'ko, Sov. Powder Metall. Met. Ceram. 20 (1981) 709.

    Article  Google Scholar 

  6. J. B. Holt and Z. A. Munir, J. Mater. Sci. 21 (1986) 251.

    Article  CAS  Google Scholar 

  7. A. A. Zenin, A. G. Merzhanov and G. A. Nersisyan, Fiz. Goren. Vzryva 17 (1981) 63.

    Google Scholar 

  8. Z. A. Munir and J. B. Holt, J. Mater. Sci. 22 (1987) 710.

    Article  CAS  Google Scholar 

  9. I. P. Borovinskaya and V. E. Loryan, Sov. Powder Metall. Met. Ceram. 191 (1979) 851.

    Google Scholar 

  10. T. M. Maksimov, M. K. Ziatdinov, A. G. Raskolenlo and O. K. Lepakova, Combust. Explos. Shock Waves 15 (1979) 415.

    Article  Google Scholar 

  11. A. R. Sarkisyan, S. K. Dolukhanyan and I. P. Borovinskaya, Sov. Powder Metall. Met. Ceram. 17 (1978) 424.

    Article  Google Scholar 

  12. K. A. Philpot, Z. A. Munir and J. B. Holt, J. Mater. Sci. 22 (1987) 159.

    Article  CAS  Google Scholar 

  13. S. D. Dunmead, D. W. Readey, C. E. Semler and J. B. Holt, J. Am. Ceram. SoC. 72 (1989) 2318.

    Article  CAS  Google Scholar 

  14. O. R. Bergmann and J. Barrington, ibid. 49 (1966) 502.

    Article  CAS  Google Scholar 

  15. A. P. Hardt and P. V. Phund, Combust. Flame 21 (1973) 77.

    Article  CAS  Google Scholar 

  16. A. P. Hardt and R. W. Holsinger, ibid. 21 (1973) 91.

    Article  CAS  Google Scholar 

  17. V. O. Eramkov, A. G. Strunina and V. V. Barzykin, Combust. Explos. Shock Wave 12 (1976) 185.

    Article  Google Scholar 

  18. S. C. Deevi, J. Mater. Sci. 26 (1991) 2662.

    Article  CAS  Google Scholar 

  19. W. C. Lee and S. L. Chung, Int. J. Self-Propagat. High-Temp. Synth. 1(2) (1992) 211.

    CAS  Google Scholar 

  20. A. I. Kirdyashkin, Yu. M. Maksimov and E. A. Nekrasov, Fiz. Goren. Vzryva 17(4) (1981) 33.

    CAS  Google Scholar 

  21. S. Sarian, J. Appl. Phys. 39 (1968) 3305.

    Article  CAS  Google Scholar 

  22. Idem, ibid. 39 (1968) 5036.

    Article  CAS  Google Scholar 

  23. Idem, ibid. 40 (1969) 3515.

    Article  CAS  Google Scholar 

  24. R. Pampuch, J. Lis and L. Stobierski, in “Combustion and Plasma Synthesis of High Temperature Materials”, edited by Z. A. Munir and J. B. Holt (VCH, New York, 1990) p. 211.

    Google Scholar 

  25. E. K. Storms, in “The Refractory Carbides”, edited by J. L. Margrave (Academic Press, New York, 1967) p. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W.C., Chung, S.L. Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the Ti+C system. Journal of Materials Science 30, 1487–1494 (1995). https://doi.org/10.1007/BF00375253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375253

Keywords

Navigation