Skip to main content
Log in

Synthesis and physicochemical properties of cobalt aluminium hydrotalcites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cobalt aluminium hydrotalcites with different compositions were prepared by a coprecipitation method under low supersaturation conditions. The compounds were characterized by X-ray diffraction (XRD), infrared absorption (IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and BET surface area measurements. XRD and IR studies revealed that all the compounds are single-phase crystallized under a hydrotalcite-like network. Hydrothermal treatments given to the aged sample increased the crystallinity of the samples. TG studies showed two stages of weight loss, the first due to the removal of interlayer water and the second ascribed to the removal of water molecules from the brucite sheet and CO2 from the interlayer carbonate anion, whose transition temperature depends on the Co/Al atomic ratio. Thermal calcination of these materials results in the formation of high surface area non-stoichiometric spinel phase whose crystallinity increases with increase in the calcination temperature attributed to the sintering of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Feitknecht, Helv. Chem. Acta 25 (1942) 131.

    Article  CAS  Google Scholar 

  2. R. Allmann, Acta Cystallogr. 24 (1968) 972.

    Article  CAS  Google Scholar 

  3. H. F. W. Taylor, Mineral. Mag. 39 (1973) 377.

    Article  CAS  Google Scholar 

  4. S. Miyata, Clays Clay Miner. 23 (1975) 369.

    Article  CAS  Google Scholar 

  5. W. T. Reichle, Solid State Ionics 22 (1986) 135.

    Article  CAS  Google Scholar 

  6. K. A. Corrado, A. Kostapapas and S. L. Suib, ibid. 26 (1988) 77.

    Article  Google Scholar 

  7. H. C. B. Hansen and R. M. Taylor, Clay Miner. 25 (1990) 161.

    Article  CAS  Google Scholar 

  8. T. J. Pinnavaia, NATO ASI Ser., Ser. C, Zeolite Microporous Solids: Synthesis, structure and reactivity (1992) p. 91.

  9. S. Kannan and C. S. Swamy, J. Mater. Sci. Lett. 11 (1992) 1585.

    Article  CAS  Google Scholar 

  10. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today 11 (1991) 173.

    Article  CAS  Google Scholar 

  11. E. C. Kruissink, L. L. Van Reijen and J. R. H. Ross, J. Chem. Soc. Farad. Trans. I 77 (1981) 665.

    Article  Google Scholar 

  12. O. Clause, M. Gazzano, F. Trifiro, A. Vaccari and L. Zotorski, Appl. Catal. 73 (1991) 217.

    Article  CAS  Google Scholar 

  13. W. T. Reichle, J. Catal. 94 (1985) 547.

    Article  CAS  Google Scholar 

  14. S. Kannan and C. S. Swamy, Appl. Catal. B, 3 (1994) 109.

    Article  CAS  Google Scholar 

  15. D. E. Laylock, R. L. Collacoat, D. A. Skelton and M. F. Tchir, J. Catal. 130 (1991) 354.

    Article  Google Scholar 

  16. T. Sato, H. Okuyama, T. Endo and M. Shimada, React. Solids 8 (1990) 63.

    Article  CAS  Google Scholar 

  17. S. Kannan and C. S. Swamy, in “INDO-US workshop on Perspectives in New Materials”, New Delhi, India, 23–24 March 1992, abstract p. 75.

  18. S. Miyata, Clays Clay Miner. 31 (1983) 305.

    Article  CAS  Google Scholar 

  19. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B25 (1969) 925.

    Article  Google Scholar 

  20. B. D. Cullity, in “Elements of X-ray Diffraction” (Addison-Wesley, Reading, MA, 1987) p. 284.

    Google Scholar 

  21. F. M. Labajas, V. Rives and M. A. Ulibarri, J. Mater. Sci. 27 (1992) 1546.

    Article  Google Scholar 

  22. M. J. Hernandez-Moreno, M. A. Ulibarri, J. L. Rendon and C. J. Serna, Phys. Chem. Miner. 12 (1985) 34.

    CAS  Google Scholar 

  23. L. Pesic, S. Salipurovic, V. Markovic, D. Vucelic, W. Kagunya and W. Jones, J. Mater. Chem. 2 (1992) 1069.

    Article  CAS  Google Scholar 

  24. A. J. Marchi, J. I. Di Cosimo and C. R. Apestiguia, in “Proceedings of the 9th International Congress on Catalysis”, Vol. 2, Chemical Institute of Canada, Ottawa, edited by M. J. Phillips and M. Ternan (1988) p. 529.

    Google Scholar 

  25. M. J. Hernandez, M. A. Ulibarri, J. L. Rendon and C. J. Serna, Thermochim. Acta 81 (1984) 187.

    Article  Google Scholar 

  26. P. Garcia Casado and I. Rasines, J. Solid State Chem. 52 (1984) 187.

    Article  Google Scholar 

  27. W. T. Reichle, S. Y. Kang and D. S. Everhardt, J. Catal. 101 (1986) 352.

    Article  CAS  Google Scholar 

  28. E. C. Kruissink, L. E. Alzamora, S. Orr, E. B. M. Doesburg, L. L. Van Reijen, J. R. H. Ross and G. Van Veen, in “Preparation of Catalysts II”, Studies in Surface Science Catalysis, Vol. 3, edited by B. Delmon, P. Grange, P. A. Jacobs and G. Poncelet (Elsevier, Amsterdam, 1979) p. 143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, S., Velu, S., Ramkumar, V. et al. Synthesis and physicochemical properties of cobalt aluminium hydrotalcites. Journal of Materials Science 30, 1462–1468 (1995). https://doi.org/10.1007/BF00375249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375249

Keywords

Navigation