Skip to main content
Log in

Filtration of the enteric bacteria Escherichia coli by two filter-feeding bivalves, Venus verrucosa and Mytilus galloprovincialis

II. Modelling

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This paper describes the mathematical model used to compute the filtration and assimilation rates of two filter-feeding bivalves, Venus verrucosa and Mytilus galloprovincialis fed on the enteric bacteria Escherichia coli. The model initially consisted of six compartments: bivalves, bacteria, dissolved organic matter (DOM), CO2, biodeposits, and resuspended biodeposits. We introduced three second-order time-delays to account for the time lags between ingestion of radioactive materials and (1) the production of radioactive biodeposits, (2) the production of radioactive DOM, and (3) the production of radioactive CO2 by the bivalves. These delays resulted in the subdivision of the bivalves compartment into three subcompartments: Bivalves 1, Bivalves 2, Bivalves 3. The model simulates the exchanges of radioactivity between compartments, and allows the quantification of the radioactivity corresponding to compartments that cannot be directly measured (i.e., bacteria and biodeposits). Our results show that M. galloprovincialis ingests E. coli more quickly than does V. verrucosa (kinetic coefficients of 0.280 and 0.120, respectively). Neither bivalve seems able to efficiently assimilate E. coli. The assimilation rates of V. verrucosa and M. galloprovincialis are between 11.1 and 20.4%, and 7.5 and 14.8%, respectively. Because of the low assimilation rates recorded during this study, because of the resuspension of the biodeposits produced, and because of the presence of culturable E. coli in biodeposits of both bivalves, our conclusions are that: (1) filter-feeding bivalves are probably inefficient in purifying seawater polluted by the tested strain of E. coli, and (2) as opposed to marine bacteria and other previously tested enteric bacteria, the strain of E. coli used during the present study probably does not constitute a suitable food source for filter-feeding bivalves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Amouroux, J. M. (1982). Ethologie, filtration, nutrition, bilan énergétique de Venus verrucosa Linné (bivalves). Thèse. Université Paris 6

  • Amouroux, J. M. (1986). Comparative study of the carbon cycle in Venus verrucosa fed on bacteria and phytoplankton. I. Consumption of bacteria (Lactobacillus sp.). Mar. Biol. 90: 237–241

    Google Scholar 

  • Amouroux, J. M., Amouroux, J. (1988). Comparative study of the carbon cycle in Venus verrucosa fed on bacteria and phytoplankton. III. Comparison of models. Mar. Biol. 99: 339–347

    Google Scholar 

  • Amouroux, J. M., Amouroux, J., Bastide, J., Cahet, G., Grémare, A. (1990). Interrelations in a microcosm with a suspension-feeder and a deposit-feeder. II: Modelling. Oceanol. Acta 13: 69–78

    Google Scholar 

  • Amouroux, J. M., Grémare, A., Amouroux, J. (1989). Modelling of consumption and assimilation in Abra alba (Mollusca: Bivalvia). Mar. Ecol. Prog. Ser. 51: 87–97

    Google Scholar 

  • Bernard, F. R. (1989). Uptake of coliform bacteria by four marine bivalve molluscs. Can. J. Fish. aquat. Sciences 46: 1592–1599

    Google Scholar 

  • Birkbeck, T. H., McHenery, J. G. (1982). Degradation of bacteria by Mytilus edulis. Mar. Biol. 72: 7–12

    Google Scholar 

  • Boak, A. C., Goulder, R. (1983). Bacterioplankton in the diet of the calanoid copepod Eurytemora sp. in the Humber Estuary. Mar. Biol. 73: 139–149

    Google Scholar 

  • Carlucci, A. F., Pramer, D. (1959). Factors affecting the survival of bacteria in seawater. Appl. envirl Microbiol. 7: 388–392

    Google Scholar 

  • Charles, F. (1990). Filtration d'une suspension d'Escherichia coli par Venus verrucosa et Mytilus galloprovincialis (mollusques: bivaves). Diplôme d'Etude Approfondie d'océanographie biologique. Unitersité Pierre et Marie Curie, Paris 6

  • Charles, F, Grémare, A., Amouroux, J.-M., Cahet, G. (1992). Filtration of the enteric bacteria Escherichia coli by two filter-feeding bivalves, Venus verrucosa and Mytilus galloprovincialis. I. Experimental study. Mar. Biol. 113: 117–124

    Google Scholar 

  • Conover, R. J., Francis, V. (1973). The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Mar. Biol. 18: 272–283

    Google Scholar 

  • Ferron, A. (1982). Bactériologie médicale à l'usage des étudiants en médecine. 11emo édn. C&R, Paris

    Google Scholar 

  • Gauthier, M., Pietri, C. (1989). Devenir des bactéries et virus entériques en eau de mer. In: Bianchi, M., Marty, D., Bertrand, J.-C., Caumette, P., Gauthier, M., Microorganismes dans les écosystèmes océaniques. Masson, Paris, p. 239–248

    Google Scholar 

  • Goldstein, R. A., Elwood, J. W. (1971). A two-compartment, three parameter model for the absorption and retention of ingested elements by animals. Ecology 42: 935–939

    Google Scholar 

  • Grégoire, F. (1972). Pharmacocinétique et analyse compartimentale. J. Pharm. Belg. 27: 98–111

    Google Scholar 

  • Grémare, A., Amouroux, J. M., Amouroux, J. (1989). Modelling of consumption and assimilation in the deposit-feeding polychaete Eupolymnia nebulosa. Mar. Ecol. Prog. Ser. 54: 239–248

    Google Scholar 

  • Hollibaugh, J. T., Azam, J. A., Azam, F. (1980). Radioactively labeling assemblage of bacterioplankton for use in trophic studies. Limnol. Oceanogr. 25: 172–181

    Google Scholar 

  • Langdon, C. J., Newell, R. I. E. (1990). Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Mar. Ecol. Prog. Ser. 58: 299–310

    Google Scholar 

  • McHenery, J. G., Birkbeck, T. H. (1985). Uptake and processing of cultured microorganisms by bivalves. J. exp. mar. Biol. Ecol. 90: 145–163

    Google Scholar 

  • Prieur, D. (1980). Experimental studies of trophic relationships between marine bacteria and bivalve molluscs. Kieler Meeresforsch (Sonderh.) 5: 376–383

    Google Scholar 

  • Prieur, D., Mével G., Nicolas, J. L., Plusquellec, A., Vigneulle, M. (1990). Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr. mar. Biol. A. Rev. 28: 277–352

    Google Scholar 

  • Seiderer, L. J., Davis, C. L., Robb, F. T., Newell, R. C. (1984). Utilisation of bacteria as nitrogen resource by kelp-bed mussel Choromytilus meridionalis. Mar. Ecol. Prog. Ser. 15: 109–116

    Google Scholar 

  • Smith, D. F., Horner, M. J. (1981). Tracer kinetic applied to problems in marine biology. Can. Bull. Fish. aquat. Sciences 210: 113–129

    Google Scholar 

  • Wright, R. T., Coffin, R., Ersing, C. P., Pearson, D. (1982). Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton. Limnol. Oceanogr. 27: 91–98

    Google Scholar 

  • Zobell, C. E., Landon, W. A. (1937). Bacterial nutrition of the California mussel. Proc. Soc. exp. Biol. Med. 36: 607–609

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charles, F., Amouroux, J.M., Grémare, A. et al. Filtration of the enteric bacteria Escherichia coli by two filter-feeding bivalves, Venus verrucosa and Mytilus galloprovincialis . Marine Biology 113, 125–131 (1992). https://doi.org/10.1007/BF00367646

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367646

Keywords

Navigation