Skip to main content
Log in

Development of human monoclonal antibodies: A review

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

This article describes the current status in the development of human monoclonal antibodies. Over the last ten years a lot of information about the human immune system has emerged. Combining these with the many new (bio-)technologies it is plausible that the long awaited breakthrough of this technology is close. This paper focuses on the “classical” cell-biological methods of achieving stable, antibody-producing human cell lines via cell fusion methods or virus derived transformations of human B-lymphocytes, as well as genetic engineering methods e.g. DNA libraries or phage display technology. The available in vitro immunization methods are critically reviewed and their impact on this topic is discussed. Therapeutic applications for cancer treatment or passive immunization against infectious diseases with antibodies derived by both ways are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aman P, Ehlin-Henriksson B and Klein G (1984) Epstein-Barr virus susceptibility of normal human B lymphocyte populations. J. Exp. Med. 159, 208–220.

    Google Scholar 

  • Anderson MA and Gusella JF (1984) Use of Cyclosporin A in establishing Epstein-Barr-Virus-transformed human lymphoblastoid cell lines. In vitro 20, 856–858.

    Google Scholar 

  • Banchereau J and Rousset F (1991) Growing human B-lymphocytes in the CD-40 System. Nature, 353, 678–679.

    Google Scholar 

  • Baron D and Hartlaub U (1987) Humane monoklonale Antikörper, G. Fischer Verlag, Stuttgart.

    Google Scholar 

  • Bischoff R, Eisert RM, Schedel I, Vienken J and Zimmermann U (1982) Human hybridoma cells produced by electro-fusion. FEBS Letters 147, 64–68.

    Google Scholar 

  • Borrebaeck CAK (1986) In vitro immunization for production of murine and human monoclonal antibodies: present status. Tibtech 6, 147–152.

    Google Scholar 

  • Borrebaeck CAK (1988) Human monoclonal antibodies produced from primary in vitro immunized leucine methyl ester-treated peripheral blood lymphocytes. In: Borrebaeck CAK, In vitro immunization in hybridoma technology. Progress in Biotechnology, Vol. 5, Elsevier 209–230.

  • Borrebaeck CAK, Daniellson L and Möller SA (1988a) Human monoclonal antibodies produced from L-leucine methyl estertreated and in vitro immunized peripheral blood lymphocytes. Biochem. Biophys. Res. Comm. 148, 941–946.

    Google Scholar 

  • Borrebaeck CAK, Danielsson L and Möller SA (1988b) Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 85, 3995–3999.

    Google Scholar 

  • Bosma GC, Custer RP and Bosma MJ (1983) A severe combined immunodeficiency in the mice. Nature 301, 527–529.

    Google Scholar 

  • Brams P, Royston I and Boerner P (1993a) In vitro priming of human lymphocytes I Il-2 and Il-4 requirements. Human Antibod. Hybridom. 4, 47–56.

    Google Scholar 

  • Brams P, Royston I and Boerner P (1993b) In vitro priming of human lymphocytes II Induction of antigen specific IgG response by repeated antigen stimulation. Human Antibod. Hybridom. 4, 57–63.

    Google Scholar 

  • Bron D, Feinberg MB, Teng NNH and Kaplan HS (1984) Production of human monoclonal IgG antibodies against Rhesus (D) antigen. Proc. Natl. Acad. Sci. USA 81, 3214–3217.

    Google Scholar 

  • Butler JL, Lane HC and Fauci AS (1983) Delineation of optimal conditions for producing mouse-human hybridomas from human peripheral blood B cells of immunized subjects. J. Immunol. 130, 165–168.

    Google Scholar 

  • Chan MA, Stein LD, Dosch HM and Sigal NH (1986) Heterogeneity of EBV-transformable human B lymphocyte populations. J. Immunol. 136, 106–114.

    Google Scholar 

  • Chiorazzi N, Wassermann RL and Kunkel HG (1982) Use of Epstein-Barr virus transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas. J. Exp. Med. 156, 930–935.

    Google Scholar 

  • Cole PC, Campling BG, Louwman IH, Kozbor D and Roder JC (1984) A strategy for the production of human monoclonal antibodies reactive with Lung Tumor cell lines. Cancer Res. 44, 2750–2753.

    Google Scholar 

  • Cote RJ and Houghton AN (1985) The generation of human monoclonal antibodies and their use in the analysis of the humoral immune response to cancer. In: Englemann EG, Foung J, Larrick J and Raubitscheck: Human Hybridomas and Monoclonal Antibodies. Plenum New York, 189–201.

    Google Scholar 

  • Crawford DH, Callard RE, Muggeridge MI, Mitchell DM, Zanders ED and Beverley PCL (1983) Production of human monoclonal antibody to X31 Influenza virus nucleoprotein. J. Gen. Virol. 64, 697–700.

    Google Scholar 

  • Croce CM, Shander M, Martinis J, Cicurel L, D'Ancona GG and Koprowski H (1980) Preferential retention of human chromosome 14 in mouse x human B cell hybrids. Eur. J. Immunol. 10, 486–488 (1980).

    Google Scholar 

  • Darveau A, Chevrier M-C, Néron S, Delage R and Lemieux R (1993) Efficient preparation of human monoclonal antibodiey-secreting heterohybridomas using peripheral B lymphocytes cultured in the CD-40 system. J. Immunol. Methods, 159, 139–143.

    Google Scholar 

  • Dorfmann NA (1985) The optimal technological approach to the development of human hybridomas. J. Biolog. Res. Mod. 4, 213–239.

    Google Scholar 

  • Duchosal MA, Eming SA, Fischer P, Leturcq D, BarbasIII CF, McConahey PJ, Caothien RH, Thorton GB, Dixon FJ and Burton DR (1992) Immunization of hu-PBL-SCID mice and the rescue of human monoclonal Fab-fragments through combinatorial libraries. Nature, 355, 258–259.

    Google Scholar 

  • Emanuel D, Gold J, Colacino J, Lopez C and Hämmerling U (1984) A human monoclonal antibody to Cytomegalovirus (CMV). J. Immunol. 133, 2202–2205.

    Google Scholar 

  • Foung SKH, Perkins S, Raubitschek A, Larrick J, Lizak G, Fishwild D, Engleman EG and Grumet FC (1984) Rescue of human monoclonal antibody production from an EBV-transformed B cell line by fusion to a human-mouse hybridoma. J. Immunol. Methods 70, 83–90.

    Google Scholar 

  • Freshney RI (1994) Culture of animal cells. A manual of basic technique. 3rd. ed. Alan R. Liss, Inc, New York.

    Google Scholar 

  • Gebauer W (1989) Ph.D. Thesis, Univ. München.

  • Gebauer W and Lindl T (1989) Humane monoklonale Antikörper. Drug Research 39, 287–292.

    Google Scholar 

  • Gebauer W and Lindl T (1990) Construction of human monoclonal antibodies against Rabies NS- protein by Epstein-Barr Virus transformation. Drug Research, 40, 718–722.

    Google Scholar 

  • Ghosh S, Cannon CA and Campbell AM (1987) Analysis of human antibody response to Cholera vaccination by Epstein-Barr virus transformation and human-human hybridoma production. J. Clin. Lab. Immunol. 23, 129–133.

    Google Scholar 

  • Glassy MC, Handley HH, Hagiwara H and Royston I (1983) UC 729-6, a human lymphoblastoid B-cell line useful for generating antibody-secreting human-human hybridomas. Proc. Natl. Acad. Sci. USA 80, 6327–6331.

    Google Scholar 

  • Glassy MC (1993) Production methods for generating human monoclonal antibodies Human. Antibod. Hybridoma, 4, 154–165.

    Google Scholar 

  • Grunow R, Jahn S, Porstmann T, Kiessig S, Steinkeller H, Steindl F, Mattanovich D, Gürtler L, Deinhardt F, Katinger H and v. Baehr R (1988) The high efficiency, human B cell immortalizing heteromyeloma CB-F7. J. Immunol. Methods 106, 257–265.

    Google Scholar 

  • Haspel MV, McCabe RP, Pomato N, Janesch NJ, Knowlton JV, Peters LC, Hoover HCH and Hanna MG (1985) Generation of tumour cell-reactive humane monoclonal antibodies using peripheral blood lymphocytes from actively immunized colorectal carcinoma patients. Cancer Res. 45, 3951–3961.

    Google Scholar 

  • Hibi T, Chan MA, Petsche D and Dosch H-M (1986) Phenotype, frequency and EBV responsiveness of human marrow B and pre-B cells. J. Immunol. 136, 3211–3217.

    Google Scholar 

  • Hilfenhaus J, Kanzy EJ, Köhler R and Willems WR (1986) Generation of human anti-Rubella monoclonal antibodies from human hybridomas constructed with antigen-specific Epstein-Barr virus transformed cell lines. Behring Inst. Mitt. 80, 31–41.

    Google Scholar 

  • Ho M-K, Rand N, Murray J, Kato K and Rabin H (1985) In vitro immunization of human lymphocytes. I Production of human monoclonal antibodies against Bombesin and Tetanus Toxoid. J. Immunol, 135, 3831–3838.

    Google Scholar 

  • Ho MK (1988) Human monoclonal antibodies produced by in vitro immunization. In: Borrebaeck CAK, IN vitro immunisation in hybridoma technology. Progress in biotechnology, Volume 5, Elsevier, 247–266.

  • Ichimori Y, Sasano K, Itoh H, Hititsumachi S, Kimura Y, Kaneko K, Kida M and Tsukamoto K (1985) Establishment of hybridomas secreting human monoclonal antibodies against Tetanus Toxin and Hepatitis B virus surface antigen. Biochem. Biophys. Res. Comm. 129, 26–33.

    Google Scholar 

  • Ikematsu H, Goldfarb IS, Harindranath N, Kasaain MT and Casali P (1992) Generation of human monoclonal antibody-producing cell lines by Epstein-Barr virus (EBV)-transformation of B-Lymphocytes and somatic cell hybridization techniques. J. Tissue Cult. Methods, 14, 9–12.

    Google Scholar 

  • Ikematsu H, Harindranath N, Ueki Y, Notkins AL and Casali P (1993) Clonal analysis of a human antibody response. J. Immunol. 150, 1325–1337.

    Google Scholar 

  • Imam A, Drushella MM, Tayler CR and Tökes ZA (1985) Generation and immunhistological characterization of human monoclonal antibodies to Mammary Carcinoma cells. Cancer Res. 45, 263–271.

    Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ and White TJ (1990) PCR Protocols. Academic Press, San Diego, USA.

    Google Scholar 

  • Jacot-Guillarmod H (1988) Human monoclonal antibodies obtained by fusion with a heteromyeloma. In: Borrebaeck CAK, In vitro immunization in hybridoma technology. Progress in biotechnology, Vol. 5, Elsevier, 295–302.

  • Jahn S, Grunow R, Mehl M, Kiessig S and v. Baehr R (1987) Hibridomas contra la toxina tetanica, construidos con linfocitos humanos tomados de donandes a diferentes tiempos despues del booster in vivo. Interferon y Biotecnologia 4, 264–266.

    Google Scholar 

  • Jahn S, Grunow R, Kiessig ST, Specht U, Matthes H, Hiepe F, Hlinak A and v. Baehr R (1988) Establishment of human Ig producing heterohybridomas by fusion of mouse-myeloma cells with human lymphocytes derived from peripheral blood, bone marrow, spleen, lymph node and synovial fluid. J. Immunol. Methods 107, 59–66.

    Google Scholar 

  • Jakobsen PH (1987) Human monoclonal antibodies — still much to learn. Leukemia 1, 521–523.

    Google Scholar 

  • James K and Bell GT (1987) Human monoclonal antibody production. Current status and future prospects. J. Immunol. Methods 100, 5–40.

    Google Scholar 

  • Jonak ZL, Owen JA and Machy P (1988) Strategies for the immortalization of B lymphocytes. In: Borrebaeck CAK, In vitro immunization in hybridoma technology. Progress in Biotechnology, Volume 5, Elsevier, 163–193.

  • Kitano K, Iwanmoto K, Shintani Y and Akiyama S (1988) Effective production of human monoclonal antibody against Tetanus Toxoid by selection of high productivity clones of a heterohybridoma. J. Immunol. Methods 109, 9–16.

    Google Scholar 

  • Kitano K, Shintani Y, Ichimori Y, Tsukamoto K, Sasai S and Kida M (1988) Production of human monoclonal anti-bodies by heterohybridomas. Appl. Microbiol. Bio/Technol. 24, 282–286.

    Google Scholar 

  • Knappik A and Plückthun A (1994) An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments. Biotechniques 17, 754–761.

    Google Scholar 

  • Koizumi S, Fujiwara S, Kikuta H, Okano M, Imai S, Mizuno F and Osato T (1986) Production of human monoclonal antibodies against Epstein-Barr virus specific antigens by the virus-immortalized lymphoblastoid cell lines. Virol. 150, 161–169.

    Google Scholar 

  • Koropatnick J, Pearson J and Harris F (1988) Extensive loss of human DNA accompanies loss of antibody production in heteromyeloma hybridoma cells. Mol. Biol. Med, 5, 69–83.

    Google Scholar 

  • Kozbor D and Roder JC (1984) In vitro stimulated lymphocytes as a source of human hybridomas. Eur. J. Immunol. 14, 23–27.

    Google Scholar 

  • Kozbor D, Tripputi P, Roder JC and Croce CM (1984) A human hybrid myeloma for production of human monoclonal antibodies. J. Immunol. 133, 3001–3005.

    Google Scholar 

  • Kwekkeboom J, de Groat C and Tager JM (1992) Efficient electric field-induced generation of hybridomas from human B-lymphocytes without prior activation in vitro. Human Antib. Hybridom. 3, 48–52.

    Google Scholar 

  • Kwekkeboom J, van Oosten M, de Boer M, van Alphen L, Mevissen MLCM, Lindhout E, Tager JM and de Groot C (1993) An efficient procedure for the generation of human monoclonal antibodies based on activation of human B lymphocytes by a murine thymoma cell line. J. Immunol. Methods 160, 117–127.

    Google Scholar 

  • Lafon M and Lafage M (1987) Antiviral activity of monoclonal antibodies specific for the internal proteins N and NS of Rabies virus. J. Gen. Virol. 68, 3113–3123.

    Google Scholar 

  • Lagacé J and Brodeur BR (1985) Parameters affecting in vitro immunization of human lymphocytes. J. Immunol. Methods 85, 127–136.

    Google Scholar 

  • Larrick JW, Truitt KE, Raubitschek A, Senyk G and Wang JCN (1983) Characterization of human hybridomas secreting antibody to Tetanus Toxoid. Proc. Natl. Acad. Sci. USA 80, 6376–6380.

    Google Scholar 

  • Li Y, Ashby JM and Eremin O (1993) In vitro primary immunization of B-lymphocytes for producing human monoclonal antibodies against tumor-associated antigens. Human. Antibod. Hybridomas, 4, 26–30.

    Google Scholar 

  • Lindl T and Bauer J (1994) Zell- und Gewebekultur, 3rd ed, G Fischer Verlag, Stuttgart.

    Google Scholar 

  • Lundgren K, Wahlgren M, Troye-Blomberg M, Berzins K, Perlmann H and Perlmann P (1983) Monoclonal anti-parasite and anti-RBC antibodies produced by stable EBV-transformed B cell lines from Malaria patients. J. Immunol, 131, 2000–2003.

    Google Scholar 

  • Marbrook J (1967) Primary immune response in cultures of spleen cells. Lancet 2, 1279–1281.

    Google Scholar 

  • Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD and Winter G (1991) By-passing immunization: human antibodies from V-gene libraries displayed on phage. J. Molec. Biology, 222, 581–587.

    Google Scholar 

  • Martin D, Brodeur BR, Larose Y, Faucher S and Hamel J (1988) Production of human monoclonal antibodies against Haemophilus influenzae type B using a heteromyeloma. In: Borrebaeck CAK, In vitro immunization in hybridoma technology. Progress in Biotechnology, Volume 5, Elsevier, 285–293.

  • Masuho Y, Sugano T, Matsumoto Y, Sawada S and Tomibe K (1986) Generation of hybridomas producing human monoclonal antibodies against Herpes Simplex virus after in vitro stimulation. Biochem. Biophys. Res. Comm. 135, 495–500.

    Google Scholar 

  • Masuho Y (1988) Human monoclonal antibodies: prospects for use as passive immunotherapy. Serodiagnosis and Immunotherapy in Infectious Disease 2, 319–340.

    Google Scholar 

  • Matsumoto Y, Sugano T, Miyamoto Ch and Masuho Y (1986) Generation of hybridomas producing human monoclonal antibodies against human Cytomegalovirus. Biochem. Biophys. Res. Commun. 137, 273–280.

    Google Scholar 

  • van Meel FCM, Steenbakkers PGA and Oomen JCH (1985) Human and chimpanzee monoclonal antibodies. J. Immunol. Methods 80, 267–276.

    Google Scholar 

  • Miller G and Lipman M (1973) Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc. Natl. Acad. Sci. USA 70, 190–194.

    Google Scholar 

  • Minakawa H, Hirata Y, Sugawara I, Fukuda A and Yoshida TO (1985) Characterization of stable Epstein-Barr (EB) virus transformed cell lines and mouse-human hybridomas producing a large quantity of anti-Tetanus Toxoid (TT) monoclonal antibody. Behring Inst. Mitt. 78, 139–147.

    Google Scholar 

  • Olsson L and Kaplan HS (1980) Human-human hybridomas producing monoclonal antibodies of predefined antigenic specifity. Proc. Natl. Acad. Sci. USA 77, 5429–5431.

    Google Scholar 

  • Olsson L and Kaplan HS (1983a) Human-human monoclonal antibody-producing hybridomas: technical aspects. Methods of Enzymology 92, 3–20.

    Google Scholar 

  • Olsson L and Kaplan HS (1983b) Antibody producing human-human hybridomas. I Technical aspects. J. Immunol. Methods 61, 17–32.

    Google Scholar 

  • Östberg L (1986) Monoklonale Antikörper als therapeutische Wirkstoffe. Triangel 25, 2–4.

    Google Scholar 

  • Parren PWI (1992) Preparation of genetically enginered monoclonal antibodies for human immunotherapy. Human Antibod. Hybridomas 3, 137–145.

    Google Scholar 

  • Peters JH, Baumgartner H and Schulze M (1990) Monoklonale Antikörper, 2nd ed, Springer Verlag, Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • Plückthun A (1992) Mono and bivalent antibody fragments produced in Escherichia coli: engineering, folding and antigen binding. Immunol. Rev. 130, 151–188.

    Google Scholar 

  • Pollock BJ and d'Apice AJF (1988) Production of human monoclonal antibodies against specific antigens by in vitro immunization. In: Borrebaeck CAK, In vitro immunization in hybridoma technology. Progress in Biotechnology, Volume 5, Elsevier, 277–284.

  • Posner MR, Elboim H and Santos D (1987) The construction and use of a human-mouse-myeloma analogue suitable for the routine production of hybridomas secreting human monoclonal antibodies. Hybridoma 6, 611–625.

    Google Scholar 

  • Pratt M, Mikhalev A and Glassy MC (1987) The generation of Ig-secreting UC 729-6 derived human hybridomas by electrofusion. Hybridoma 6, 469–477.

    Google Scholar 

  • Reading Ch (1982) Theory and methods for immunization in culture and monoclonal antibody production. J. Immunol. Methods 53, 261–291.

    Google Scholar 

  • Ritts RE, Ruiz-Arguelles A, Weyl KG, Bradley AL, Weihmeir B, Jacobsen DJ and Strehlo BL (1983) Establishment and characterization of a human non-secretory plasmacytoid cell line and its hybridization with human B cells. Int. J. Cancer 31, 133–141.

    Google Scholar 

  • McRoberts N, Burnett KG and Boerner P (1988) In vitro immunization of human splenocytes against a soluble haptenated protein. In: Borrebaeck CAK, In vitro immunization in hybridoma technology. Progress in Biotechnology. Vol. 5 Elsevier, 267–276.

  • Schwaber JF, Posner MR, Schlossmann SF and Lazarus H (1984) Human-human hybrids secreting Pneumococcal antibodies. Human Immunol. 9, 137–143. Seigneurin JM, Desgranges C, Seigneurin D, Paire J, Renversez JC, Jacquemont B and Micouin C (1983) Herpes simplex virus glycoprotein D: human monoclonal antibody produced by bone marrow cell line. Science 221, 173–175.

    Google Scholar 

  • Steenbakers PGA, van Wezenbeek PMGF, van Zanten J and Hauw The T (1993) Efficient generation of human anti-cytomegalovirus IgG monoclonal antibodies from preselectet antigen-specific B cells. Human. Antib. Hybridomas, 4, 166–173.

    Google Scholar 

  • Steenbakers PGA, van Wezenbeek PMGF and Olijve W (1993) Immortalization of antigen selected B cells. J. Immunol. Methods, 163, 33–40.

    Google Scholar 

  • Steinitz M, Tamir S and Goldfarb A (1984) Human anti-Pneumococci antibody produced by an Epstein-Barr Virus (EBV)-immortalized cell line. J. Immunol. 132, 877–881.

    Google Scholar 

  • Stevens RH, Macy E, Morrow C and Saxon A (1979) Characterization of a circulating subpopulation of spontaneous antitetanus toxoid antibody producing B cells following in vivo booster immunization. J. Immunol. 122, 2498–2504.

    Google Scholar 

  • Teng NNH, Lam KS, Riera FC and Kaplan HS (1983) Construction and testing of mouse-human heteromyelomas for human monoclonal antibody production. Proc. Natl. Acad. Sci. USA 80, 7308–7312.

    Google Scholar 

  • Thompson JM, Lowe J and McDonald DF (1993) Human monoclonal anti-D-secreting heterohybridomas from peripheral B-lymphocytes expanded in the CD-40 system. J. Immunol. Methods 175, 137–140.

    Google Scholar 

  • Thompson KM, Hough DW, Maddison PJ, Melamed MD and Hughes-Jones N (1986) The efficient production of stabil, human monoclonal antibody-secreting hybridomas from EBV-transformed lymphocytes using the mouse-myeloma X63-Ag8.653 as a fusion partner. J. Immunol. Methods 94, 7–12.

    Google Scholar 

  • Uchiyama K, Saito H, Tokuhisa T, Imai K and Taniguchi M (1987) High frequency of loss of human kappa light chain expression in mouse-human heterohybridomas. Hybridoma 6, 645–653.

    Google Scholar 

  • Wassermann RL, Budens RD and Thaxton ES (1986) In vitro stimulation prior to fusion generates antigen-binding human-human hybridomas. J. Immunol. Methods 93, 275–283.

    Google Scholar 

  • Westerwoudt RJ (1985) Improved fusion methods. IV. Technical aspects. J. Immunol. Methods 77, 181–196.

    Google Scholar 

  • Winger L, Winger C, Shastry P, Russell A and Longenecker M (1983) Efficient generation in vitro, from human peripheral blood cells, of monoclonal Epstein-Barr virus transformants producing specific antibody to a variety of antigens without prior deliberate immunization. Proc. Natl. Acad. Sci. USA 80, 4484–4488.

    Google Scholar 

  • Winter G and Harris WJ (1993) Humanized antibodies. Immunology Today 14, 243–246.

    Google Scholar 

  • Winter G and Milstein C (1991) Human made antibodies. Nature, 349, 293–296.

    Google Scholar 

  • Ziegler-Heitbrock HWL, Reiter Ch, Trenkmann J, Fütterer A and Riethmüller G (1986) Protection of mice against Tetanus Toxin by combination of two human monoclonal antibodies recognizing distinct epitopes on the toxin molecule. Hybridoma, 5, 21–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindl, T. Development of human monoclonal antibodies: A review. Cytotechnology 21, 183–193 (1996). https://doi.org/10.1007/BF00365341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00365341

Key words

Navigation