Skip to main content
Log in

Characteristics of arachidonic acid metabolism of human endothelial cells in culture

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Human umbilical endothelial cells in culture retain differentiated morphological and functional characterization in primary culture and even in the early subcultures, after which they begin to degenerate. We have studied the morphological and biochemical characterization (ability to produce prostacyclin, prostaglandin E2 and thromboxane A2 in culture) of endothelial cells in the first seven subcultures. In addition the influence of serum and endothelial cell growth factor added to the culture medium have been evaluated. With 20% normal human serum, cell proliferation is faster than with the same concentration of human fetal or bovine fetal serum.

After the 3rd passage, morphological and growth alterations become observable in the endothelial cells. However, prostacyclin, prostaglandin E2 and thromboxane A2 production showed no variations during the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carmona E, Jorquera JI, Llopis F, Aznar JA, Villanueva MJ and Sanchez-Cuenca JM (1989) Un método rápido y sencillo para la obtención de IgG específica anti-factor von Willebrand. Sangre 34: 63–66.

    Google Scholar 

  2. Chesterman CN, Ager A and Gordon SL (1983) Regulation of prostaglandin production and ectoenzyme activities in culture aortic endothelial cells. J. Cell. Physiol. 116: 45–50.

    Google Scholar 

  3. Czervionke RL, Hoak JC and Fry GF (1978) Effect of aspirin on thrombin-induced adherence of platelets to cultured cells from the blood vessel wall. J. Clin. Invest. 62: 847–856.

    Google Scholar 

  4. Gimbrone MA (1986) In: Gimbrone MA (ed) Vascular endothelium in Hemostasis and Thrombosis, pp. 1–13 Churchill Livingtone, New York.

    Google Scholar 

  5. Hayashi I and Sato GH (1976) Replacement of serum by hormones permits growth of cells in a defined medium. Nature 259: 132–134.

    Google Scholar 

  6. Jaffe EA (1984) Biology of endothelial cells, pp. 1–13. Martinus Nijhoff Publishers, Boston.

    Google Scholar 

  7. Jaffe EA, Nachman RL, Becker CG and Minick CR (1973a) Culture of human endothelial cells derived from umbilical veins. Identification by morphology and immunology criteria. J. Clin. Invest. 52: 2745–2756.

    Google Scholar 

  8. Jaffe EA, Hoyer LW and Nachman RL (1973b) Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J. Clin. Invest. 52: 2757–2764.

    Google Scholar 

  9. Levin RI, Weksler BB, Marcus AJ, Jaffe EA (1984) In: Jaffe EA (ed) Biology of endothelial cells, pp. 228–247. Martinus Nijhoff Publishers, Boston.

    Google Scholar 

  10. Lumdberg C, Marceau F, Huey R and Hugli TE (1986) Anaphytoxin C5a fails to promote prostacyclin release in culture endothelial cells from human umbilical veins. Immunopharmacology 12: 135–143.

    Google Scholar 

  11. Maciag T, Hoover GA and Weinstin R (1982) High and low molecular weight forms of endothelial cell growth factor. J. Biol. Chem. 57: 5333–5336.

    Google Scholar 

  12. Maciag T, Hoover GA, Stermerman MB and Weinstin R (1984) In: Jaffe EA (ed) Biology of endothelial cells, pp. 87–96. Martinus Nijhoff Publishers, Boston.

    Google Scholar 

  13. Martinez-Sales V, Llopis F and Aznar J (1987) Determinación de tromboxano B2 por radioinmunoensayo. Rev. Diag. Biol. 36: 254–256.

    Google Scholar 

  14. Martinez-Sales V, Llopis F and Aznar J (1989) Preparación de un antisuero de alta especificidad para la determinación de 6-keto-PGF por radioinmunoensayo. Rev. Iberoamer. Tromb. Hemos. (in press).

  15. Moncada S, Higgs EA and Vane JR (1977) Human arterial and venous tissues generate prostacyclin (Prostaglandin X), a potent inhibitor of platelet aggregation. Lancet i: 18–22.

    Google Scholar 

  16. Moncada S and Vane JR (1979) Pharmacological and endogenous roles of prostaglandin endoperoxides thromboxane A2 and prostacyclin. Pharmacol. Rev. 30: 293–331.

    Google Scholar 

  17. Nakane PK (1968) Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study in pituitary gland of the rat. J. Histochem. Cytochem. 16: 557–560.

    Google Scholar 

  18. Needleman P, Minkes M and Raz A (1976) Thromboxanes: selective biosynthesis and distinct biological properties. Science 193: 163–165.

    Google Scholar 

  19. Seitz RJ, Neven E, Henrich M, Schrader J and Wechsler W (1987) In: Cervós-Navarro J and Ferszt R (eds) Stroke and Microcirculation, pp. 111–115. Raven Press.

  20. Schrör K (1985) Prostaglandins, other eicosanoids and endothelial cells. Basic Res. Cardiol. 80: 502–514.

    Google Scholar 

  21. Weibel ER and Palade C (1964) New cytoplasmic components in arteria endothelia. J. Cell. Biol. 23: 101–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Sales, V., Gomez-Lechón, M.J. & Gilabert, J. Characteristics of arachidonic acid metabolism of human endothelial cells in culture. Cytotechnology 3, 21–29 (1990). https://doi.org/10.1007/BF00365262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00365262

Key words

Navigation