Skip to main content
Log in

The relationship between indentation hardness of organic solids and their molecular structure

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A model has been developed relating the indentation hardness of organic molecular solids to their cohesive energy density, the length of the Burgers vector, the weakest plane from the crystal structure and crystal structural parameters. Whilst the described model is pragmatic, calculated indentation values for a variety of materials based on the weakest plane using specific Burgers vectors agree well with those from literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. H. Hildebrand and R. L. Scott, “Solubility of Non-Electrolytes”, 3rd Edn (Reinhold, New York, 1949).

    Google Scholar 

  2. Idem, “Regular Solutions” (Prentice-Hall, Englewood Cliffs, New Jersy, 1962).

    Google Scholar 

  3. A. V. Tobolsky, “Properties and Structure of Polymers” (Wiley, New York, 1962) pp. 1.

    Google Scholar 

  4. A. H. Willbourn, Polymer 17 (1976) 965.

    Article  Google Scholar 

  5. R. J. Roberts, R. C. Rowe and P. York, Powder Technol. 65 (1991) 139.

    Article  CAS  Google Scholar 

  6. F. B. Bowden and D. Tabor, “The Friction and Lubrication of Solids”, Part II, 2nd Edn (Oxford University Press, London, 1964) p. 56.

    Google Scholar 

  7. D. Tabor, “The Hardness of Metals”, (Clarendon, Oxford, 1951) p. 51.

    Google Scholar 

  8. A. H. Cottrell, “The Mechanical Properties of Matter” (Wiley, London, 1964) p. 121.

    Google Scholar 

  9. J. N. Sherwood, in “The Plastically Crystalline State (Orientationally-disordered Crystals), edited by J. N. Sherwood (Wiley, Chichester, 1979) p. 39.

    Google Scholar 

  10. F. J. Balta-Calleja, in “Advances in Polymer Science 66”, edited by H. H. Kauschand and H. G. Zachmann (Springer Berlin, 1985) p. 117.

    Google Scholar 

  11. J. J. Gilman, in “The Physics and Chemistry of Ceramics”, edited by C. Kingsberg (Gordon and Breach, New York, 1962) p. 240.

    Google Scholar 

  12. Idem, J. Appl. Phys. 41 (1970) 1664.

    Article  CAS  Google Scholar 

  13. D. G. Thomas and L. A. K. Stavely, J. Chem. Soc. (1952) 4569.

  14. D. Tabor, in “Physics of Materials”, edited by D. W. Borland, L. M. Clarebrough and A. J. W. Moore (University of Melbourne, Department of Mineralogy and Metallurgy, Parkville, Australia, 1979) p. 271.

    Google Scholar 

  15. A. I. Kitaigorodsky, “Molecular Crystals and Molecules”, (Academic, New York, 1973) p. 18.

    Google Scholar 

  16. A. Gavezzotti, Acta Crystallogr. B46 (1990) 275.

    Article  CAS  Google Scholar 

  17. E. Nadgornyi, in “Progress in Materials Science”, edited by J. W. Christian, P. Haasen and T. B. Massalski (Pergamon, Oxford, 1988) p. 516.

    Google Scholar 

  18. A. D. Mighell, V. L. Himes and J. R. Rodgers, Acta Crystallogr. A39 (1983) 737.

    Article  CAS  Google Scholar 

  19. Y. Motohashi and S. Ohtake, Phys. Status. Solidi 50 (1978) 449.

    Article  CAS  Google Scholar 

  20. R. F. Fedors, J. Polym. Sci. 26 (1969) 189.

    Google Scholar 

  21. Idem, Polym. Eng. Sci. 14 (1974) 147.

    Article  CAS  Google Scholar 

  22. Idem. ibid. 14 (1974) 472.

    Article  CAS  Google Scholar 

  23. C. M. Hansen, J. Paint Technol. 39 (1967) 104.

    CAS  Google Scholar 

  24. A. F. M. Barton, “Handbook of Solubility Parameters and other Cohesion Parameters” (CRC, Baton Rouge, Florida, 1983) p. 61.

    Google Scholar 

  25. N. Huu-Phuoc, R. P. Tan-Luu, A. Munafo, P. Ruelle, H. Nam-Tran, M. Buchmann, U. W. Kesserling, J. Pharm. Sci. 75 (1986) 68.

    Article  Google Scholar 

  26. E. N. Hiestand, G. E. Amidon, D. P. Smith and B. D. Tiffany, in Proceedings Technical Programme: International Powder Bulk Solids Handling (1981) p. 383.

  27. J. Ichikawa, K. Imagawa and N. Kaneniwa, Chem. Pharm. Bull. 36 (1988) 2699.

    Article  CAS  Google Scholar 

  28. W. C. Duncan-Hewitt and G. C. Weatherly, J. Mater. Sci. Lett. 8 (1989) 1350.

    Article  CAS  Google Scholar 

  29. K. Ridgway, E. Shotten and J. Glasby, J. Pharm. Pharmacol. 21 (1969) Suppl. 19S.

  30. J. F. McConnell, Cryst. Struct. Commun. 3 (1974) 73.

    CAS  Google Scholar 

  31. Y. Kim, K. Machida, T. Taga and K. Osaki, Chem. Pharm. Bull. 33 (1985) 2641.

    Article  CAS  Google Scholar 

  32. J. Housty and M. Hospital, Acta Crystallogr. 18 (1965) 693.

    Article  CAS  Google Scholar 

  33. Y. Sasada, T. Takano and M. Kakudo, Bull. Chem. Soc. Jpn. 37 (1964) 940.

    Article  CAS  Google Scholar 

  34. G. M. Brown and H. A. Levy, Acta Crystallogr. B29 (1973) 790.

    Article  Google Scholar 

  35. D. C. Fries, S. T. Rao and M. Sundaralingam, ibid. B27 (1971) 994.

    Article  Google Scholar 

  36. Z. Berkovitch-Yellin, J. Amer. Chem. Soc. 107 (1985) 8239.

    Article  CAS  Google Scholar 

  37. J. M. E. Bunyan, N. Shankland and D. B. Sheen, AIChE Symp. Ser. 87 (1991) 44.

    CAS  Google Scholar 

  38. A. S. Myerson and M. Saska, ACS Symp. Ser. 438 (1990) 55.

    Article  CAS  Google Scholar 

  39. M. Saska and A. S. Myerson, J. Cryst. Growth. 61 (1983) 546.

    Article  CAS  Google Scholar 

  40. R. A. Visser and P. Bennema, Neth. Milk Dairy J. 37 (1983) 109.

    CAS  Google Scholar 

  41. H. Umeyama, S. Nakagawa and I. Moriguchi, J. Phys. Chem. 83 (1979) 2048.

    Article  CAS  Google Scholar 

  42. J. M. Thomas and J. O. Williams, Trans. Faraday Soc. 63 (1967) 1922.

    Article  CAS  Google Scholar 

  43. M. C. Etter, Z. Urbanczyk-Lipkowska, T. M. Ameli and T. W. Panunto, J. Crystall. Spectr. Res. 18 (1988) 491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, R.J., Rowe, R.C. & York, P. The relationship between indentation hardness of organic solids and their molecular structure. JOURNAL OF MATERIALS SCIENCE 29, 2289–2296 (1994). https://doi.org/10.1007/BF00363416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363416

Keywords

Navigation