Skip to main content
Log in

Ionic transport in the (Agl∶AgCl) mixed-system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ionic mobility, conductivity, number of charge carriers and transference number are reported for annealed and rapidly quenched [xAgl∶(1−x)AgCl] mixed systems, these results are compared with Agl. Of these three materials the quenched mixed-system had the highest Ag+ ion conductivity. Further, preliminary studies are reported where the high conductivity system (i.e. quenched 0.75 Agl∶0.25 AgCl) has been used as host material for the preparation of Ag+ ion conducting glasses and composites. Detailed thermal/phase diagram studies have also been carried out on the quenched composition. The conductivity enhancement in the quenched system is attributed to the formation of new disordered phases and the introduction of amorphisity, the simple space-charge model applicable to the annealed system failed to explain these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Laskar and S. Chandra (eds) “Superionic solids and solid electrolytes — recent trends” (Academic Press, NY, 1989).

    Google Scholar 

  2. P. S. Nicholson, M. S. Whittingham, G. C. Farrington, W. W. Smeltzer and J. Thomas (eds) “Solid state ionics — 91” (North Holland. Amsterdam, 1992).

    Google Scholar 

  3. B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (eds) “Solid state ionics — materials and applications” (World Scientific, Singapore, 1992).

    Google Scholar 

  4. T. Minami and N. Machida, in “Solid state ionics international conference on advanced materials — 91”, edited by M. Balakanski, T. Takahashi and H. L. Tuller (Elsevier, Amsterdam, 1992) p. 91.

    Google Scholar 

  5. C. A. Angell, Solid State Ionics 18/19 (1986) 72.

    Article  Google Scholar 

  6. M. D. Ingram, Phys. Chem. Glasses 28 (1987) 215.

    CAS  Google Scholar 

  7. K. Shahi and J. B. Wagner jr, J. Phys. Chem. Solids 43 (1982) 713.

    Article  CAS  Google Scholar 

  8. J. Maier, in “Superionics solids and solid electrolytes — recent trends”, edited by A. L. Laskar and S. Chandra (Academic Press, NY, 1989) p. 137.

    Chapter  Google Scholar 

  9. A. K. Shukla and V. Sharma, in “Solid state ionics — materials and applications”, edited by B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (World Scientific, Singapore, 1992) p. 91.

    Google Scholar 

  10. U. Lauer and J. Maier, Solid State Ionics 51 (1992) 209.

    Article  CAS  Google Scholar 

  11. M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi and Z. Ontaki, J. Appl. Phys. 57 (1985) 123.

    Article  CAS  Google Scholar 

  12. S. Chandra, S. K. Tolpadi and S. A. Hashimi, Solid State Ionics 28/30 (1988) 651.

    Article  Google Scholar 

  13. R. C. Agrawal, K. Kathal, R. Chandola and R. K. Gupta, in “Solid state ionics — materials and applications”, edited by B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (World Scientific, Singapore, 1992) p. 363.

    Google Scholar 

  14. E. A. Secco, ibid.in “ p.46.

    Google Scholar 

  15. R. C. Agrawal, K. Kathal and R. K. Gupta, Unpublished work.

  16. R. Kumar and R. C. Agrawal, Unpublished work.

  17. R. K. Gupta and R. C. Agrawal, Unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, R.C., Gupta, R.K., Kumar, R. et al. Ionic transport in the (Agl∶AgCl) mixed-system. JOURNAL OF MATERIALS SCIENCE 29, 3673–3677 (1994). https://doi.org/10.1007/BF00357334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357334

Keywords

Navigation