Skip to main content
Log in

Competitive interactions between related clades: evolutionary implications of overgrowth interactions between encrustin cyclostome and cheilostome bryozoans

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Overgrowth interactions between encrusting cyclostome (eight species) and cheilostome (over 50 species) colonies were examined in subtidal communities in the northern Adriatic Sea off Rovinj, Croatia, in May–June 1988 and September–October 1990. Cheilostome colonies occupied ca. 80% of the available substrate space, whereas the cyclostome colonies occupied <5%. Out of 210 recorded interactions, cheilostomes overlapped cyclostomes in 164, while cyclostomes overlapped cheilostomes in only 16; 30 encounters resulted in mutual overlap or at least temporary growth termination along the line of contact. Most of the recorded interactions were for the cyclostomes Diplosolen obelia (Johnston) and Plagioecia patina (Lamarck). Both species elevated their colony margins on contact with a cheilostome in some instances, but D. obelia only overgrew competing cheilostomes in 12/120 encounters, and P. patina never prevailed. I propose that the cheilostomes have a key evolutionary innovation, lacking in cyclostomes, consisting of more rapid ontogenetic development of zooids along colony margins so that encrusting cheilostomes have substantially higher colony margins. This results in an outflow of filtered water along the edge of encrusting cheilostome colonies, while cyclostomes take water in at colony margins. These contrasting feeding currents apparently give a competitive advantage to the cheilostomes where colony margins approach and make contact with those of cyclostomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Buss, L. W. (1979). Habitat selection, directional growth and spatial refuges: why colonial animals have more hiding places. In: Larwood, G. P., Rosen, B. R. (eds.) Biology and systematics of colonial organisms. Academic Press, London, p. 459–497

    Google Scholar 

  • Buss, L. W. (1980a). Competitive intrasivity and size-frequency distributions of interaction populations. Proc. natn. Acad. Sci. U.S.A 77: 5355–5359

    Google Scholar 

  • Buss, L. W. (1980b). Bryozoan overgrowth interactions — the interdependence of competition for space and food. Nature, Lond. 281: 475–477

    Google Scholar 

  • Buss, L. W. (1981). Mechanisms of competition between Onychocella alula (Hastings) and Antropora tincta (Hastings) on an eastern Pacific rocky shoreline. In: Larwood, G. P., Nielsen, C. (eds.) Recent and fossil Bryozoa. Olsen & Olsen, Fredensborg, p. 39–49

    Google Scholar 

  • Buss, L. W., Jackson, J. B. C. (1979). Competitive networks: non-transitive competitive relationships in cryptic coral reef environments. Am. Nat. 113: 223–234

    Google Scholar 

  • Carle, K. J., Ruppert, E. E. (1983). Comparative ultrastructure of the bryozoan funiculus: a blood vessel homologue. Z. zool. Syst. Evol. Forsch. 21: 181–193

    Google Scholar 

  • Chamberlain, J. A. Jr., Graus, R. R. (1975). Water flow and hydromechanical adaptations of branched reef corals. Bull. mar. Sci. 25: 112–125

    Google Scholar 

  • Cook, P. L. (1977). Colony-wide water currents in living Bryozoa. Cah. Biol. mar. 17:31–47

    Google Scholar 

  • Day, R. W., Osman, R. W. (1981). Predation by Patiria miniata (Asteroidea) on bryozoans: prey diversity may depend on the mechanism of succession. Oecologia 51: 300–309

    Google Scholar 

  • Dayton, P. K. (1971). Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41: 351–389

    Google Scholar 

  • Dick, M. H. (1987). A proposed mechanism for chimney formation in encrusting cheilostomes. In: Ross, J. R. P. (ed.) Bryozoa: present and past. Western Washington University Press, Bellingham, p. 73–80

    Google Scholar 

  • Gordon, D. P. (1972). Biological relationships of an intertidal bryozoan population. J. nat. Hist. 6: 503–514

    Google Scholar 

  • Harmelin, J.-G. (1976). Le sous-ordre de Tubuliporina (Bryozoaires Cyclostomes) en Méditerranée, écologie et systématique. Mém. Inst. océanogr. Monaco 10: 1–326

    Google Scholar 

  • Harmelin, J.-G. (1977). Bryozoaires des Iles dltyères: cryptofaune bryozoologique des valves vides de Pinna nobilis rencontrées dans les herbiers des Posidonies. Trav. sci. Parc nation. Port-Cros 3: 143–157

    Google Scholar 

  • Harvell, C. D. (1984). Predator-induced defense in a marine bryozoan. Science, N. Y. 224: 1357–1359

    Google Scholar 

  • Jackson, J. B. C. (1977). Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am. Nat. 111: 743–767

    Google Scholar 

  • Jackson, J. B. C. (1979). Overgrowth competition between encrusting cheilostome ectoprocts in a Jamaican cryptic reef environment. J. Anim. Ecol. 48: 805–823

    Google Scholar 

  • Jackson, J. B. C. (1985). Distribution and ecology of clonal and aclonal benthic invertebrates. In: Jackson, J. B. C., Buss, L. W., Cook, R. E. (eds.) Yale University Press, New Haven, p. 297–355

    Google Scholar 

  • Jackson, J. B. C., Hughes, T. P. (1985). Adaptive strategies of coral-reef invertebrates. Am. Scient. 73: 265–274

    Google Scholar 

  • Jackson, J. B. C., McKinney, F. K. (1990). Ecological processes and progressive macroevolution of marine clonal benthos. In: Ross, R. M., Allmon, W. D. (eds.) Causes of evolution. University of Chicago Press, Chicago, p. 173–209

    Google Scholar 

  • Jackson, J. B. C., Winston, J. E. (1982). Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms. J. exp. mar. Biol. Ecol. 57: 135–147

    Google Scholar 

  • Keough, M. J. (1984). Dynamics of the epifauna of the bivalve Pinna bicolor: interactions among recruitment, predation, and competition. Ecology 65: 677–688

    Google Scholar 

  • Lang, J. (1973). Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift. Bull. mar. Sci. 23: 260–279

    Google Scholar 

  • Lidgard, S. (1981). Water flow, feeding, and colony form in an encrusting cheilostome. In: Larwood, G. P., Nielsen, C. (eds.) Recent and fossil Bryozoa. Olsen & Olsen, Fredensborg, p. 135–142

    Google Scholar 

  • Lidgard, S. (1985). Zooid and colony growth in encrusting cheilostome bryozoans. Palaeontology 28: 255–291

    Google Scholar 

  • Liem, K. F. (1973). Evolutionary strategies and morphological innovations: eichlid pharyngeal jaws. Syst. Zool. 22: 425–441

    Google Scholar 

  • Liem, K. F. (1990). Key evolutionary innovations, differential diversity, and symecomorphosis. In: Nitecki, M. H. (ed.) Evolutionary innovations. University of Chicago Press, Chicago, p. 147–170

    Google Scholar 

  • Lutaud, G. (1961). Contribution a l'étude du bourgeonnement et de la croissance des colonies chez Membranipora membranacea (Linne), Bryozoaire chilostome. Annls Soc. r. zool. Belg. 91: 157–300

    Google Scholar 

  • McKinney, F. K. (1988). Elevation of lophophores by exposed introverts in Bryozoa: a gymnolaemate character recorded in some stenolaemate species. Bull. mar. Sci. 43: 317–322

    Google Scholar 

  • McKinney, F. K. (1989). Two patterns of colonial water flow in an erect bilaminate bryozoan the cheilostome Schizotheca serratimargo. Cah. Biol. mar. 30: 35–48

    Google Scholar 

  • McKinney, F. K. (1990). Feeding and associated colonial morphology in marine bryozoans. Rev. aquat. Sci. 2: 255–280

    Google Scholar 

  • McKinney, F. K. (1991a). Colonial feeding currents of Exidmonea atlantica (Cyclostomata). Bull. Soc. Sci. nat. Ouest France Mém. H. S. 1: 263–270

    Google Scholar 

  • McKinney, F. K. (1991b). How phylogeny limits function — the example of Exidmonea. Nat. Geogr. Res. Expl. 7: 432–441

    Google Scholar 

  • McKinney, F. K., Boardman, R. S. (1985). Zooidal biometry of Stenolaemata. In: Nielsen, C., Larwood, G. P. (eds.) Bryozoa: Ordovician to Recent. Olsen & Olsen, Fredensborg, p. 193–203

    Google Scholar 

  • McKinney, F. K., Jackson, J. B. C. (1989). Bryozoan evolution. Unwin Hyman, Boston

    Google Scholar 

  • Okamura, B. (1988). The influence of neighbors on the feeding of an epifaunal bryozoan. J. exp. mar. Biol. Ecol. 120: 105–123

    Google Scholar 

  • Osborne, S. (1984). Bryozoan interactions: observations on stolonal outgrowths. Aust. J. mar. Freshwat. Res. 35: 453–462

    Google Scholar 

  • Osman, R. S. (1977). The establishment and development of a marine epifaunal community. Ecol. Monogr. 47: 37–63

    Google Scholar 

  • Palumbi, S. R., Jackson, J. B. C. (1983). Ageing in modular organisms: ecology of zooid senescence in Steginoporella sp. (Bryozoa: Cheilostomata). Biol. Bull. mar. biol. Lab., Woods Hole 164: 267–278

    Google Scholar 

  • Rubin, J. A. (1985). Mortality and avoidance of competitive over-growth in encrusting Bryozoa. Mar. Ecol. Progr. Ser. 23: 291–299

    Google Scholar 

  • Russ, G. R. (1982). Overgrowth in a marine epifaunal community: competitive hierarchies and competitive networks. Oecologia 53: 12–19

    Google Scholar 

  • Ryland, J. S. (1976). Physiology and ecology of marine bryozoans. Adv. mar. Biol. 14: 285–443

    Google Scholar 

  • Silén, L., Harmelin, J.-G. (1974). Observations on living Diastoporidae (Bryozoa, Cyclostomata), with special regard to polymorphism. Acta zool., Stockh. 55: 81–96

    Google Scholar 

  • Simpson, G. G. (1959). The nature and origin of supraspecific taxa. Cold Spring Harb. Symp. quant. Biol. 24: 255–271

    Google Scholar 

  • Stebbing, A. R. D. (1973). Competition for space between the epiphytes of Fucus serratus L. J. mar. biol. Ass. U. K. 53: 247–261

    Google Scholar 

  • Todd, C. D., Turner, S. J. (1988). Ecology of intertidal and sublittoral cryptic epifaunal assemblages. II. Non-lethal overgrowth of encrusting bryozoans by colonial ascidians. J. exp. mar. Biol. Ecol. 115: 113–126

    Google Scholar 

  • Vogel, S. (1981). Life in moving fluids. Willard Grant Press, Boston

    Google Scholar 

  • Walters, L. J., Wethey, D. S. (1986). Surface topography influences competitive hierarchies on marine hard substrata: a field experiment. Biol. Bull. mar. biol. Lab., Woods Hole 170: 441–449

    Google Scholar 

  • Ward, M. A., Thorpe, J. P. (1991). Distribution of encrusting bryozoans and other epifauna on the subtidal bivalve Chlamys opercularis. Mar. Biol. 110: 253–259

    Google Scholar 

  • Winston, J. E. (1977). Feeding in marine bryozoans. In: Woollacott, R. M., Zimmer, R. L. (eds.) Biology of bryozoans. Academic Press, New York, p. 233–271

    Google Scholar 

  • Winston, J. E. (1981). Feeding behavior of modern bryozoans. Univ. Tennessee Dept. Geol. Sci. Stud. Geol. 5: 1–21

    Google Scholar 

  • Yoshioka, P. M. (1982). Predator-induced polymorphism in the bryozoan Membranipora membranacea. J. exp. mar. Biol. Ecol. 61: 233–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinney, F.K. Competitive interactions between related clades: evolutionary implications of overgrowth interactions between encrustin cyclostome and cheilostome bryozoans. Marine Biology 114, 645–652 (1992). https://doi.org/10.1007/BF00357261

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357261

Keywords

Navigation