Skip to main content
Log in

Microstructure and mechanical properties of Cr3C2 particulate reinforced Al2O3 matrix composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al2O3 matrix with three grades of Cr3C2 particle size (0.5, 1.5 and 7.5 μm) composites were fabricated by a hot-pressing technique. Fully dense compacts with Cr3C2 content up to 40 vol % can be acquired at 1400 °C under 30 MPa pressure for 1 h. The flexural strength increases from 595 to 785 Mpa for fine Cr3C2 particle (0.5 μm) reinforced Al2O3 matrix composites. The fracture strength is significantly dependent on the fracture modes of matrix (intergranular or transgranular). The transgranular fracture with a compressive residual stress gives a high fracture strength of composites. At the same time, the fracture toughness increases from 5.2 MPa m1/2 (10 vol % Cr3C2) to 8.0 MPa m1/2 (30 vol % Cr3C2) for the coarse Cr3C2 particle (7.5 μn) reinforced Al2O3 matrix composites. The toughening effects of incorporating Cr3C2 particles into Al2O3 matrix originate from crack bridging and deflection. The electrical conductivity and the possibility of electrical discharge machining of these composites were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Cutler and K. M. Rigtrup, J. Amer. Ceram. Soc. 75 (1992) 36.

    Article  CAS  Google Scholar 

  2. C. H. Jung and C. H. Kim, J. Mater. Sci. 26 (1991) 5037.

    Article  CAS  Google Scholar 

  3. M. Bengisu and O. T. Inal, Ceram. Int. 17 (1991) 187.

    Article  CAS  Google Scholar 

  4. R. A. Cutler and A. C. Hurford, Mater. Sci. Engng, A105/106 (1988) 183.

    Article  Google Scholar 

  5. N. F. Petrofes and A. M. Gadalla, Amer. Ceram. Soc. Bull. 67 (1988) 1048.

    CAS  Google Scholar 

  6. B. Cales, C. Martin and P. Vivier, in Proceedings of the Third International Symposium of Ceramic Materials and Components for Engines, Las Vegas, Nevada, November 1988, edited by V. J. Tennery (The American Ceramic Society, Westerville, OH, 1989) p. 1189.

    Google Scholar 

  7. A. Bellosi, G. D. Portu and S. Guicciardi, J. Eur. Ceram. Soc. 10 (1992) 307.

    Article  CAS  Google Scholar 

  8. E. Klar, in “Metals Handbook”, 9th edition, Vol. 7 (American Society for Metals, Metals Park, Ohio, 1984) p. 804.

    Google Scholar 

  9. M. Ando and H. Awaji, Taikabutsu 41 (1989) 239.

    Google Scholar 

  10. F. F. Lange, J. Mater. Res. 2 (1987) 59.

    Article  CAS  Google Scholar 

  11. R. K. Bordia and G. W. Scherer, Acta Metall. 36 (1988) 2393.

    Article  CAS  Google Scholar 

  12. S. Sundaresan and L. A. Aksay, J. Amer. Ceram. Soc. 73 (1990) 54.

    Article  CAS  Google Scholar 

  13. J. Wang and R. Raj, ibid. 74 (1991) 1959.

    Article  CAS  Google Scholar 

  14. F. F. Lange and M. M. Hirlinger, ibid. 67 (1984) 164.

    Article  CAS  Google Scholar 

  15. K. Niihara, A. Nakahira and M. Inove, in “Better Ceramics Through Chemistry”, edited by M. J. Hampdensmith, W. G. Klemperer and C. J. Brinker (Materials Research Society Symposium Proceedings, Vol. 271, Pittsburgh, P.A., 1992) p. 589.

  16. L. C. Stearns, J. Zhao and M. P. Harmer, J. Eur. Ceram. Soc. 10 (1992) 473.

    Article  CAS  Google Scholar 

  17. C. S. Smith, Trans. Metall. Soc. AIME 175 (1949) 15.

    Google Scholar 

  18. P. F. Becher, J. Amer. Ceram. Soc. 74 (1991) 255.

    Article  CAS  Google Scholar 

  19. A. G. Evans, ibid. 73 (1990) 187.

    Article  CAS  Google Scholar 

  20. R. W. Davidge, in “Fracture Mechanics of Ceramics”, Vol. 4, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 447.

    Google Scholar 

  21. P. L. Gutshall and G. E. Gross, Eng. Frac. Mech. 1 (1969) 463.

    Article  Google Scholar 

  22. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” (Wiley, New York, 1976) p. 177.

    Google Scholar 

  23. A. G. Evans and R. M. Mcmeeking, Acta Metall 34 (1986) 2435.

    Article  Google Scholar 

  24. F. Erdogan and P. F. Joseph, J. Amer. Ceram. Soc. 72 (1989) 262.

    Article  CAS  Google Scholar 

  25. P. F. Becher, C. H. Hsueh, P. Angelini and T. N. Tiegs, ibid. 71 (1988) 1050.

    Article  CAS  Google Scholar 

  26. D. R. Clarke, ibid. 75 (1992) 739.

    Article  CAS  Google Scholar 

  27. G. Rajagopal and M. Satyam, J. Appl. Phys. 49 (1978) 5536.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, C.T., Wu, J.M. & Li, A.K. Microstructure and mechanical properties of Cr3C2 particulate reinforced Al2O3 matrix composites. JOURNAL OF MATERIALS SCIENCE 29, 2671–2677 (1994). https://doi.org/10.1007/BF00356816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356816

Keywords

Navigation