Skip to main content
Log in

Non-equilibrium segregation of solutes to grain boundary

Part III Mechanism of non-equilibrium segregation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanisms for the non-equilibrium segregation of solutes to static grain boundary during cooling (quenching-induced segregation) and to moving grain boundary during recrystallization (moving-induced segregation) are proposed. For quenching-induced segregation, in consideration of the local equilibrium among vacancies, solute atoms and vacancy-solute atom complexes, as well as the influence of equilibrium grain-boundary segregation, the theoretical dynamic formulae for this non-equilibrium segregation have been derived on the basis of the vacancy-dragging mechanism. Theoretical calculations have been carried out for the non-equilibrium segregation of boron to austenitic grain boundaries during isothermal holding and continuous cooling after heating at high temperature; the results agree well with those obtained from experiments. The model has also successfully explained the different behaviours of boron segregation during cooling in α-Fe and in γ-Fe. For moving-induced segregation, based on the interaction between dislocations and the moving boundaries during recrystallization, a dislocation relaxation and widening grain-boundary mechanism of solute segregation on moving boundaries is proposed. Applying this model, we have calculated the boron segregation on moving boundaries during recrystallization in Fe-3% Si alloy; the results of these calculations agree with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. L. He, Y. Y. Chu and J. J. Jonas, Acta Metall. 37 (1989) 147.

    Article  CAS  Google Scholar 

  2. J. H. Westbrook and K. T. Aust, ibid. 11 (1963) 1151.

    Article  Google Scholar 

  3. K. T. Aust, R. E. Hasseman, P. Niessen and J. H. Westbrook, ibid. 16 (1968) 291.

    Article  CAS  Google Scholar 

  4. X. L. He, M. Djahaji, J J. Jonas and J. Jackman, Acta Metall. Mater. 39 (1991) 2295.

    Article  CAS  Google Scholar 

  5. T. Takeyama, H. Takahashi and S. Ohnuki, in “Grain Boundary Structure and Related Phenomena”, Proceedings of Fourth Japan Institute of Metals International Symposium (Japan Institute of Metals,1986), p. 401.

  6. M. B. Kasen, Acta Metall. 31 (1983) 489.

    Article  CAS  Google Scholar 

  7. X. L. He, Y. Y. Chu and J. J. Jonas, ibid. 37 (1989) 2905.

    Article  CAS  Google Scholar 

  8. S. H. Zhang, X. L. He, Y. Y. Chu and T. Ko, Acta Metall. Sinica 28A (1992) 187.

    Google Scholar 

  9. L. Karlsson, Acta Metall. 30 (1988) 25.

    Article  Google Scholar 

  10. A. F. Smith and G. B. Gibbs, J. Met. Sci. 2 (1968) 47.

    Article  CAS  Google Scholar 

  11. J. A. Hudson and R. S. Nelson, “Vacancies '76” (Metal Society, London 1977) p. 126.

    Google Scholar 

  12. P. E. Busby, M. E. Warga and C. Wells, Trans. AIME 197 (1953) 1463.

    Google Scholar 

  13. T. M. Williams, A. M. Stoneham and D. R. Harries, J. Met. Sci. 10 (1976) 14.

    Article  CAS  Google Scholar 

  14. M. J. Doyama, J. Nucl. Mater. 69, 70 (1978) 350.

    Article  Google Scholar 

  15. A. F. Rowcliffe and R. B. Nicholson, Acta Metall. 20 (1972) 143.

    Article  CAS  Google Scholar 

  16. M. A. V. Champman and R. G. Faulkner, ibid. 31 (1983) 677.

    Article  Google Scholar 

  17. J. W. Miller, Phys. Rev. 188 (1969) 1074.

    Article  CAS  Google Scholar 

  18. W. F. Jandeska Jr. and J. E. Morral, Met. Trans. 3 (1972) 2933.

    Article  CAS  Google Scholar 

  19. R. W. Ballufi, “Grain Boundary Structure and Kinetics” (American Society of Metals, Metals Park, Ohio, 1980) p. 297.

    Google Scholar 

  20. L. Karlsson, H. Norden and H. Odelius, Acta Metall. 36 (1988) 1.

    Article  CAS  Google Scholar 

  21. S. H. Zhang, Ph. D Thesis, University of Science and Technology, Beijing, 1922.

    Google Scholar 

  22. S. H. Zhang, X. L. He, Y. Y. Chu and T. Ko, J. Mater. Sci. 29 (1994).

  23. S. H. Zhang, X. L. He and T. Ko, J. Mater. Sci. 29 (1994).

  24. J. W. Cahn, Acta Metall. 10 (1962) 789.

    Article  CAS  Google Scholar 

  25. D. McLean, “Grain Boundaries in Metals” (Oxford University Press, Oxford, 1957) p. 116.

    Google Scholar 

  26. K. Kurzydolski, J. W. Wyrzykowski and G. Garbacz, Phys. Met. Metall. 65 (1988) 163.

    Google Scholar 

  27. S. H. Zhang, X. L. He and T. Ko, (Submitted to Acta Metall. Sinica).

  28. R. Bullough and V. K. Tewary, in “Dislocations in Solids, Vol. 2: Dislocations in Crystals”, edited by F. R. N. Nabarro (North-Holland, 1979) p. 58.

  29. M. W. Grabski and R. Korski, Phil. Mag. 22(1970) 707.

    Article  CAS  Google Scholar 

  30. M. W. Grabski and J. W. Wyrzykowski, Mater. Sci. Engng 44 (1980) 229.

    Article  CAS  Google Scholar 

  31. P. H. Pumphery and H. Gleiter, Phil. Mag. 32 (1975) 881.

    Article  Google Scholar 

  32. R. A. Varin, Phys. Status Solidi 52 (1979) 337.

    Article  Google Scholar 

  33. E. A. Brandes (ed) “Smithells Metals Reference Book”, 6th edn, (Butterworth, 1983) p. 13.

  34. T. Abe, K. Tsakada, H. Tagawa and I. Kozassa, Tetsu-to-Hagane (Iron and Steel) 74 (1988) 2201 (in Japanese).

    Article  CAS  Google Scholar 

  35. M. Hillert and G. R. Purdy, Acta Metall. 26 (1978) 333.

    Article  CAS  Google Scholar 

  36. K. Smidoda, W. Gottschalk and H. Gleiter, ibid. 26 (1978) 1833.

    Article  CAS  Google Scholar 

  37. D. A. Smith, Ultramicroscopy 29 (1989) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., He, X. & Ko, T. Non-equilibrium segregation of solutes to grain boundary. JOURNAL OF MATERIALS SCIENCE 29, 2663–2670 (1994). https://doi.org/10.1007/BF00356815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356815

Keywords

Navigation