Skip to main content
Log in

Dissolution kinetics of glass fibres in saline solution: in vitro persistence of a sparingly soluble aluminium-rich leached layer

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dissolution of boro-silicate glass fibres in physiological saline solution was studied at 37°C either in a non-refilled or in a periodically refilled reactor. Large variations of the weight losses were observed with time and refilling frequencies. The weight losses were found to increase with the refilling frequency. Sections of altered fibres, studied using scanning electron microscopy, show an outer hydrated layer surrounding an unaltered glass core. The residual silicon- and aluminium-rich hydrated layer (Al/Si=0.2, H2O/Al=16–19) was characterized by X-ray photoelectron spectrometry, energy dispersive spectrometry and thermogravimetric analysis. The thickness of the hydrated layer may be theoretically calculated from the degree of reaction progression. Under unsteady state conditions, most of the dissolution occurs at the fresh glass-hydrated layer boundary, through selective processes. The proposed model explains the persistence of the aluminium-rich residue when dissolution proceeds in non-replenished systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Scholze, Glastech. Ber. 61 (1988) 161.

    CAS  Google Scholar 

  2. R. M. Potter and S. M. Mattson, ibid. 64 (1991) 16.

    CAS  Google Scholar 

  3. S. M. Mattson, Environ. Health Perspectives 102, supp. 5 (1994) 87.

    CAS  Google Scholar 

  4. J. C. Touray and P. Baillif, ibid. 102, supp. 5 (1994) 25.

    CAS  Google Scholar 

  5. P. Baillif and J. C. Touray, ibid. 102, supp. 5 (1994) 77.

    CAS  Google Scholar 

  6. S. Thelohan and A. de Meringo, ibid. 102, supp. 5 (1994) 91.

    CAS  Google Scholar 

  7. H. Scholze and R. Conradt, Ann. Occup. Hyg. 31 (1987) 683.

    CAS  Google Scholar 

  8. H. Förster and H. Tiesler, Glastech. Ber. 66 (1993) 255.

    Google Scholar 

  9. B. Chouikhi, P. Baillif and J. C. Touray, C. R. Acad. Sci. Paris 318 série II (1994) 1051.

    CAS  Google Scholar 

  10. A. Paul, “Chemistry of glasses” (Chapman and Hall, New York, 1982).

    Book  Google Scholar 

  11. J. Zarzycki, “Les verres et l'état vitreux” (Masson, Paris, 1982).

    Google Scholar 

  12. B. M. J. Smets, Philips Tech. Rev. 42 (1985) 59.

    CAS  Google Scholar 

  13. J. L. Crovisier, J. Honnorez and J. P. Eberhart, Geochim. Cosmochim. Acta 51 (1987) 2977.

    Article  CAS  Google Scholar 

  14. K. G. Knauss and T. J. Wolery, ibid. 52 (1988) 43.

    Article  CAS  Google Scholar 

  15. C. Amrhein and D. L. Suarez, ibid. 52 (1988) 2785.

    Article  CAS  Google Scholar 

  16. L. L. Hench, J. Non-Cryst. Solids 19 (1975) 27.

    Article  CAS  Google Scholar 

  17. F. R. Bacon, Glass Ind. 49 (1968) 483.

    Google Scholar 

  18. W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau and R. H. Doremus, J. Non-Cryst. Solids 33 (1979) 249.

    Article  CAS  Google Scholar 

  19. W. Smit and H. S. Stein, ibid. 34 (1979) 357.

    Article  CAS  Google Scholar 

  20. T. Advocat, PhD thesis, University Louis Pasteur, Strasbourg, France (1991).

    Google Scholar 

  21. C. Guy, PhD thesis, University Paul Sabatier, Toulouse, France (1989).

    Google Scholar 

  22. J. V. Walter and H. C. Helgeson, Am. J. Sci. 277 (1977) 1351.

    Google Scholar 

  23. P. Aagaard and H. C. Helgeson, ibid. 282 (1982) 237.

    Article  CAS  Google Scholar 

  24. H. C. Helgeson, W. M. Murphy and P. Aagaard, Geochim. Cosmochim. Acta 48 (1984) 2405.

    Article  CAS  Google Scholar 

  25. W. M. Murphy and H. C. Helgeson, ibid. 51 (1987) 3137.

    Article  CAS  Google Scholar 

  26. A. C. Lasaga, in “Reviews of mineralogy”, Vol. 8 (Mineralogical Society of America, Washington, 1983) 135.

    Google Scholar 

  27. J. L. Gamble, “Chemical anatomy, physiology and pathology of extracellular fluid”, 8th Edn (Harvard University Press, Boston, 1967).

    Google Scholar 

  28. G. M. Kanapily, O. G. Raabe, C. H. T. Goh and R. A. Chimenti Health Phys. 24 (1973) 497.

    Article  Google Scholar 

  29. G. Feck, PhD thesis, Rheinisch-Westfälischen Technischen Hochschule, Aachen, Germany (1984).

    Google Scholar 

  30. J. P. Leineweber, “Biological effects of man-made mineral fibres”, Vol. 2 (World Health Organization, Copenhagen, 1984) p. 87.

    Google Scholar 

  31. B. Chouikhi, PhD thesis, University of Orléans, France (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baillif, P., Chouikhi, B., Barbanson, L. et al. Dissolution kinetics of glass fibres in saline solution: in vitro persistence of a sparingly soluble aluminium-rich leached layer. JOURNAL OF MATERIALS SCIENCE 30, 5691–5699 (1995). https://doi.org/10.1007/BF00356707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356707

Keywords

Navigation