Skip to main content
Log in

Effect of matrix liquid phase on interphase formation in SiC fibre-reinforced Si2N2O-Al2O3-CaO composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Matrix compositions based on Si2N2O, with Al2O3 and CaO additions, were used to hot press Nicalon SiC fibre-reinforced composites at 1600 °C. With both CaO and Al2O3 additions, eutectic melting formed an appreciable volume of liquid phase during hot pressing, which remained as a stable glassy phase in the cooled composites. This liquid phase fostered formation of ∼240 nm thick carbon-rich interphases between the fibres and the matrix. These interphases showed relatively low interfacial shear strength and resulted in composites which showed non-catastrophic, notch-independent fracture. Matrices using either Al2O3 or CaO did not form adequate liquid phase to form coarse interphases, and fracture was catastrophic in nature. Post-heat treatment of the composites at 1000 °C showed peripheral oxidation (removal of the carbon content of the interphase) indicating limited protection afforded when glassy phase was present in the matrix. Controlled cooling in the hot press did not cause the liquid regions to devitrify.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Broek, “Elementary engineering fracture mechanics”, 4th Revised Edn (Kluwer Academic, Boston, 1991).

    Google Scholar 

  2. M. R. Piggott, “Load-bearing fiber composites” (Pergamon Press, New York, 1980).

    Google Scholar 

  3. S. J. Grisaffe, Adv. Mater. Process. 137(3) (1990) 43.

    Google Scholar 

  4. Idem, ibid. 137(3) (1990) 93.

    Google Scholar 

  5. J. R. Stephens, ibid. 137(4) (1990) 35.

    Google Scholar 

  6. R. Sorensen, PhD thesis, Technical University of Denmark (1993).

  7. S. Awasthi and J. L. Wood, Ceram. Eng. Sci. Proc. 9 (1988) 553.

    Article  CAS  Google Scholar 

  8. W. E. Cole, P. Reagan, C. I. Metcalfe and S. R. Wysk, ibid. 8 (1987) 968.

    Google Scholar 

  9. J. Cook and J. E. Gordon, Proc. R. Soc. A282 (1964) 508.

    Article  Google Scholar 

  10. A. G. Evans, M. Y. He and J. W. Hutchinson, J. Am. Ceram. Soc. 72 (1989) 2300.

    Article  CAS  Google Scholar 

  11. P. G. Charalambides and A. G. Evans, ibid. 72 (1988) 746.

    Article  Google Scholar 

  12. A. H. Cottrell, Proc. R. Soc. A282 (1964) 2.

    Article  CAS  Google Scholar 

  13. H. C. Cao, E. Bischoff, O. Sbaizero, M. Ruhle, A. G. Evans, D. B. Marshall and J. J. Brennan, J. Am. Ceram. Soc. 73 (1990) 1691.

    Article  CAS  Google Scholar 

  14. J. Aveston, G. A. Cooper and A. Kelly, in “Properties of Fiber Composites”, National Physical Laboratory Conference Proceedings, edited by National Physical Laboratory (IPC Science and Technology Press, Guildford, UK, 1971) pp. 15–26.

    Google Scholar 

  15. J. Aveston and A. Kelly, J. Mater. Sci. 8 (1973) 352.

    Article  CAS  Google Scholar 

  16. B. Budiansky, J. W. Hutchinson and A. G. Evans, J. Mech. Phys. Solids 34 (1986) 167.

    Article  Google Scholar 

  17. J. Homeny, J. R. Van Valzah and M. A. Kelly, J. Am. Ceram. Soc. 73 (1990) 2054.

    Article  CAS  Google Scholar 

  18. K. M. Prewo, in “Proceedings of the Conference on Tailoring Multiphase and Composite Ceramics”, edited by R. E. Tressler, G. L. Messing, C. G. Pagano and R. E. Newnahm (Pennsylvania State University, Plenum, NY, 1985) pp. 529–47.

    Google Scholar 

  19. K. M. Prewo, J. J. Brennan and G. K. Layden, Am. Ceram. Soc. Bull. 65 (1986) 305.

    CAS  Google Scholar 

  20. Idem, Ibid. 65 (1986) 322.

    Google Scholar 

  21. H. H. Shin, Y. Berta and R. F. Speyer, in “Advances in ceramic composites”, Ceramic Transactions Vol. 38, edited by N. P. Bansal (American Ceramic Society, Columbus, OH, 1993) pp. 235–48.

    Google Scholar 

  22. T. Mah, M. G. Mendiratta, A. P. Katz, R. Ruh and K. S. Mazdiyasni, J. Am. Ceram. Soc. 68 (1985) C-248.

    CAS  Google Scholar 

  23. E. Y. Luh and A. G. Evans, Ceram. Eng. Sci. Proc. 6 (1986) 608.

    Article  Google Scholar 

  24. E. Y. Luh and A. G. Evans, J. Am. Ceram. Soc. 70 (1987) 466.

    Article  CAS  Google Scholar 

  25. M. D. Thouless, O. Sbaizero, E. Bischoff and E. Y. Luh, Mater. Res. Soc. Symp. Proc. 120 (1990) 333.

    Article  Google Scholar 

  26. K. H. Jack, in “Non-oxide technical and engineering ceramics”, edited by S. Hampshire (Elsevier Applied Science, NewYork, 1986) pp. 1–30.

    Google Scholar 

  27. K. H. Jack, Mater. Res. Soc. Symp. Proc., 287 (1993) 15.

    Article  CAS  Google Scholar 

  28. C. Laffon, A. M. Flank, P. Lagarde, M. Laridjani, R. Hagege, P. Olry, J. Cotteret, J. Dixmier, J. L. Miquel, H. Hommel and A. P. Legrand, J. Mater. Sci. 24 (1989) 1503.

    Article  CAS  Google Scholar 

  29. G. Simon and A. R. Bunsell, ibid. 17 (1982) 2371.

    Article  Google Scholar 

  30. “Standard Test Methods for Flexural Properties of Unreinforced Plastics and Electrical Insulating Materials: D790-91”, Annual Book of ASTM Standards (American Society for Testing and Materials, Philadelphia, PA, 1991).

  31. D. B. Marshall and A. G. Evans, J. Am. Ceram. Soc. 68 (1985) 225.

    Article  CAS  Google Scholar 

  32. D. B. Marshall, ibid. 67 (1984) C-259.

    Article  Google Scholar 

  33. Reference manual for the Vickers indentor, Model M400-F, LECO Co., St Joseph, MI.

  34. A. Zangvil, L. J. Gauchkler and M. Ruhle, J. Mater. Sci. 15 (1980) 788.

    Article  CAS  Google Scholar 

  35. I. K. Naik, L. J. Gauckler and T. Y. Tien, J. Am. Ceram. Soc. 61 (1978) 332.

    Article  CAS  Google Scholar 

  36. G. K. Layden, “Process Development for Pressureless Sintering of SiAlON Ceramic Components,” Final Technical Report R75-91072-4, United Technologies Research Center, East Hartford, CT (1976).

    Google Scholar 

  37. A. W. J. M. Rae, D. P. Thompson and K. H. Jack, in “Ceramics for high performance applications”, Vol. II, edited by J. J. Burke, E. N. Lenoe and R. N. Katz (Brook Hill, Chestnut Hill, MA, 1978) pp. 1039–67.

    Google Scholar 

  38. R. L. Coble and W. D. Kingery, J. Am. Ceram. Soc. 39 (1956) 377.

    Article  Google Scholar 

  39. R. F. Cooper and K. Chyung, J. Mater. Sci. 15 (1980) 463.

    Google Scholar 

  40. P. M. Benson, K. E. Spear and C. G. Pantano, Ceram. Eng. Sci. Proc. 9 (1988) 663.

    Article  CAS  Google Scholar 

  41. V. S. R. Murthy, L. Jie and H. Lewis, idib. 10 (1989) 938.

    Article  CAS  Google Scholar 

  42. R. Barrett and T. F. Page, ibid. 10 (1989) 897.

    Article  CAS  Google Scholar 

  43. H. H. Shin and R. F. Speyer, J. Mater. Sci. 29 (1994) 3630.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, H.H., Berta, Y. & Speyer, R.F. Effect of matrix liquid phase on interphase formation in SiC fibre-reinforced Si2N2O-Al2O3-CaO composites. JOURNAL OF MATERIALS SCIENCE 30, 5621–5631 (1995). https://doi.org/10.1007/BF00356695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356695

Keywords

Navigation