Skip to main content
Log in

The influence of fibre aspect ratio on the deformation of discontinuous fibre-reinforced composites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fundamental theory for discontinuous fibre reinforcement of plastics is reviewed and compared to experimental data obtained from a range of single-fibre composite tests. Given that the theory provides an adequate description of fibre reinforcement, predictions for the critical fibre length in model composites based on glass fibres embedded in a range of matrices with different volume fractions have been made. The model has been used to predict the modulus for unidirectional discontinuous glass fibre-reinforced composites with a high volume fraction of glass fibres with different mean fibre lengths, diameters and matrices. From this study the concept of a critical aspect ratio, required for effective composite performance, has been defined generally for this type of material. The critical aspect ratio has been found to depend upon fibre diameter, matrix modulus and fibre volume fraction. A brief review of this class of material in the scientific literature has been made in the areas of deformation and failure. To aid the developments in the theory behind discontinuous fibre composites, a series of deformation experiments have been performed on model discontinuous glass fibre/nylon 6,6 compounds produced by extrusion and pultrusion compound technology. The materials were processed using multilive feed technology, to produce effective representations of unidirectional discontinuous glass-fibre composites. Given that the model compounds contained variations in fibre lengths and diameters, the deformation experiments performed were a fundamental test of the theory presented for the critical fibre aspect ratio and the results of theory and experiment have been compared. Based on the predictions of the model and the experimental work, conclusions are offered on the type of fibre that should be used for discontinuous fibre-reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eur. Plastics News (March) (1993) 21.

  2. H. L. Cox, Br. J. Appl. Phys. 3 (1952) 72.

    Article  Google Scholar 

  3. G. S. Hollister and C. Thomas, “Fibre Reinforced Materials” (Elsevier, 1966).

  4. T. S. Chow, J. Mater. Sci. 15 (1980) 1873.

    Article  CAS  Google Scholar 

  5. E. I. M. Asloun, M. Nardin and J. Schulz, ibid. 24 (1989) 1835.

    Article  CAS  Google Scholar 

  6. C. Galiotis, Compos. Sci. Technol. 42 (1991) 125.

    Article  CAS  Google Scholar 

  7. C. Galiotis, R. J. Young, P. H. J. Yeung and D. N. Batchelder J. Mater. Sci. 19 (1984) 3640.

    Article  CAS  Google Scholar 

  8. L. Monette, M. P. Anderson, S. Ling and G. S. Grist, ibid. 27 (1992) 4393.

    Article  Google Scholar 

  9. B. W. Rosen, AIAA J. 2 (1964) 1985.

    Article  Google Scholar 

  10. Y. Termonia, J. Mater. Sci. 22 (1987) 504.

    Article  CAS  Google Scholar 

  11. M. R. Piggott, Polym. Compos. 8 (1987) 291.

    Article  CAS  Google Scholar 

  12. Idem, M. R. Piggott, Compos. Sci. Technol. 42 (1991) 57.

    Article  CAS  Google Scholar 

  13. J. C. Figueroa, T. E. Carney, L. S. Schadler and C. Laird, ibid. 42 (1991) 77.

    Article  CAS  Google Scholar 

  14. M. Narkis, E. J. H. Chen and R. B. Pipes, Polym. Compos. 9 (1988) 245.

    Article  CAS  Google Scholar 

  15. N. Melanitis and C. Galiotis, Proc. R. Soc. Lond. A 440 (1993) 379.

    Article  CAS  Google Scholar 

  16. R. J. Young, in “Polymer surfaces and interfaces II”, edited by W. J. Feast, H. S. Munro and R. W. Richards (Wiley, 1993) Ch. 6.

  17. R. J. Day and R. J. Young, J. Micros. 169 (1993) 151.

    Article  Google Scholar 

  18. C. Galiotis, R. J. Young, P. H. J. Yeung and D. N. Batchelder, J. Mater. Sci. 19 (1984) 3640.

    Article  CAS  Google Scholar 

  19. I. M. Robinson, P. H. J. Yeung, R. J. Young and C. Galiotis, ibid. 21 (1986) 3642.

    Article  Google Scholar 

  20. I. M. Robinson, R. J. Young, C. Galiotis and D. N. Batchelder, ibid. 22 (1987) 3642.

    Article  CAS  Google Scholar 

  21. I. M. Robinson, C. Galiotis, D. N. Batchelder and R. J. Young, ibid. 26 (1991) 2293.

    Article  CAS  Google Scholar 

  22. H. Jakankhani and C. Galiotis, J. Compos. Mater. 25 (1991) 609.

    Article  Google Scholar 

  23. M. C. Andrews and R. J. Young, J. Raman Spec.

  24. M. C. Andrews, R. J. Day, X. Hu and R. J. Young, J. Mater. Sci. Lett 11 (1992) 1344.

    Article  CAS  Google Scholar 

  25. N. Melanitis, C. Galiotis, P. L. Tetlow and C. K. L. Davies, J. Compos. Mater. 26 (1992) 574.

    Article  CAS  Google Scholar 

  26. N. Melanitis, C. Galiotis, P. L. Tetlow and C. K. L. Davies J. Mater. Sci. 28 (1993) 1648.

    Article  CAS  Google Scholar 

  27. W. D. Bascom and R. M. Jensen, J. Adhesion 19 (1986) 219.

    Article  CAS  Google Scholar 

  28. A. T. Dibenedetto, Compos. Sci. Technol. 42 (1991) 103.

    Article  CAS  Google Scholar 

  29. N. Laws and R. MćLaughlin, J. Mech. Phys. Solids 27 (1979) 1.

    Article  Google Scholar 

  30. C. R. Gore, G. Cuff and D. A. Cianelli, Mater. Eng. 103 (1986) 47.

    Google Scholar 

  31. M. Davies, R. S. Bailey and D. R. Moore, Composites 20 (1989) 453.

    Article  Google Scholar 

  32. D. R. Moore, I. M. Robinsonand B. Slater,in “FRC 90” (Institute of Mechanical Engineers, London, 1990) p. 203.

    Google Scholar 

  33. R. S. Bailey and H. Kraft, Int. Polym. Proc. 2 (1987) 94.

    Article  CAS  Google Scholar 

  34. R. S. Bailey, D. R. Moore, I. M. Robinson and P. M. Rutter, Sci. Eng. Compos. Mater. 2 (1993) 171.

    Article  CAS  Google Scholar 

  35. M. J. Carling and J. G. Willams, Polym. Compos. 11 (1990) 307.

    Article  CAS  Google Scholar 

  36. F. Ramsteiner and R. Theysohn, Compos. Sci. Technol. 24 (1985) 231.

    Article  CAS  Google Scholar 

  37. Idem, Composites 10 (1979) 111.

    Article  CAS  Google Scholar 

  38. F. Ramstiner, ibid. 12 (1981) 65.

    Article  Google Scholar 

  39. N. Sato, T. Kurauchi, S. Sato and O. Kamigaito, J. Compos. Mater. 22 (1988) 850.

    Article  CAS  Google Scholar 

  40. M. Akay and D. Barkley, J. Mater. Sci. 26 (1991) 2731.

    Article  CAS  Google Scholar 

  41. N. Sato, T. Kurauchi, S. Sato and O. Kamigaito, J. Mater. Sci. 26 (1991) 3891.

    Article  CAS  Google Scholar 

  42. S. Turner, Br. Plast. (April) (1972) p. 7.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, I.M., Robinson, J.M. The influence of fibre aspect ratio on the deformation of discontinuous fibre-reinforced composites. Journal of Materials Science 29, 4663–4677 (1994). https://doi.org/10.1007/BF00356507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356507

Keywords

Navigation