Skip to main content
Log in

Multiparticle clusters and carbon superstructure in martensite

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

On the basis of experimentally verified concentration expansion tensor values, stress induced two-particle C-C potentials have been calculated in harmonic approximation. A calculation method has been developed and expressions derived for the evaluation of multiparticle interaction potentials and cluster population. The temperature range of the applicability of the method has been estimated. On the basis of this method it has been demonstrated that in thermodynamic quasi-equilibrium, carbon atoms exist in clustered form. The clusters most frequently appearing at 300 K are of four- and five-particle type. The cluster configurations have been determined and the binding energy per atom has been estimated as about 0.5 eV. At 78 K, there exist practically only five-particle linear clusters situated along the tetragonal C axis. It has been postulated that a superstructure may exist in martensite with a binding energy per atom nearly four times higher than in the case of the above clusters. The presence of superstructure is associated with the formation of five-atom seeds in the form of pyramids having their basis in the (001) plane. The formation of seeds with different topology from the other clusters is associated with overcoming a potential barrier. The postulated form of ordering at low temperatures should exhibit high thermal stability with respect to ordering changes and order-disorder phase transitions, as well as to carbide formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. V. Sumin, M. G. Zemlianov, L. M. Kaputkina, P. P. Parshin, C. D. Prokoshkin and A. I. Tchoklo, Fiz. Met. Metalloved. (USSR) 11 (1992) 122.

    Google Scholar 

  2. I. R. Entin, V. A. Somenkov and S. S. Shilstein, Dokl. Akad. Nauk USSR 206 (1972) 1096.

    CAS  Google Scholar 

  3. R. A. Johnson, Acta Metall. 13 (1965) 1259.

    Article  CAS  Google Scholar 

  4. J. M. R. Genin, Metall. Trans. A 18A (1987) 1371.

    Article  Google Scholar 

  5. G. V. Kurdiumov and A. G. Khachaturyan, Acta Metall 23 (1975) 1077.

    Article  Google Scholar 

  6. M. S. Blanter and A. G. Khachaturyan, Metall Trans. A 9A (1978) 753.

    Article  Google Scholar 

  7. L. Dabrowski, J. Mater. Sci. 25 (1990) 2722.

    Article  CAS  Google Scholar 

  8. L. Dabrowski, J. Magn. Magn. Mater. 81 (1989) 173.

    Article  CAS  Google Scholar 

  9. A. G. Khachaturyan, Fiz. Tverd. Tela (USSR) 9 (1967) 2861.

    CAS  Google Scholar 

  10. H. E. Cook and D. de, Fontaine, Acta Metall. 17 (1969) 915.

    Article  CAS  Google Scholar 

  11. Idem, ibid. 19 (1971) 607.

    Article  CAS  Google Scholar 

  12. D. W. Hoffman, ibid. 18 (1970) 819.

    Article  CAS  Google Scholar 

  13. A. G. Khachaturyan, “Theory of Structural Transformation in Solids” (Wiley, New York, 1983), and also in “Nauka”, (Moscow, 1974) p. 322.

    Google Scholar 

  14. V. J. Minkiewicz, G. Shirane and R. Nathans, Phys. Rev. 162 (1967) 528.

    Article  CAS  Google Scholar 

  15. B. N. Brockhouse, H. E. Abou-Helal and E. D. Hallman, Solid State Commun 5 (1967) 211.

    Article  CAS  Google Scholar 

  16. C. Van, Dijk and J. Bergsma, Neutron Inelastic Scattering 1 (1968) 233.

    Google Scholar 

  17. A. D. B. Woods, “Inelastic Scattering of Neutron in Solids and Liquids”, Vol. II (International Atomic Eng. Agency, Vienna, 1963) p. 3.

    Google Scholar 

  18. O. Antson, V. G. Gavrilyuk, V. A. Kudriashov, V. M. Nadutov, K. Peyuryu, Y. Petikaynen, A. Titta, V. A. Trudnov, K. Ullakko, V. A. Ulianov, P. Khiismyaki and Y. P. Thernenkov, Fiz. Met. Metalloved. (USSR) 10 (1990) 114.

    Google Scholar 

  19. M. Hayakawa and M. Tanigami, M. Oka, Met. Trans. A 16A (1985) 1745.

    Article  Google Scholar 

  20. L. Dabrowski, J. Suwalski, V. Christov, B. Sidzhimov and P. Małecki, Report IAE-2144/VIII Otwock-Swierk (1993).

  21. J. A. Rayna and B. S. Chandrasekhler, Phys. Rev. 122 (1961) 1714.

    Article  Google Scholar 

  22. G. Horvitz and H. Callen, ibid. 124 (1961) 1757.

    Article  Google Scholar 

  23. D. A. Badalyan and A. G. Khachaturyan, Fiz. Tverd. Tela (USSR) 12 (1970) 439.

    CAS  Google Scholar 

  24. L. Dabrowski, Phys. Status Solidi 128B (1985) 371.

    Article  CAS  Google Scholar 

  25. J. W. Tucker, J. Appl. Phys. 69 (1991) 6164.

    Article  Google Scholar 

  26. W. Metzner, Phys. Rev. B 43 (1991) 8549.

    Article  CAS  Google Scholar 

  27. R. Kikuchi, Phys. Rev. 81 (1951) 988.

    Article  Google Scholar 

  28. Idem, J. Chem. Phys. 19 (1951) 1230.

    Article  Google Scholar 

  29. N. S. Golosov, L. E. Popov and L. Y. Pudan, J. Phys. Chem. Solids 34 (1973) 1149.

    Article  CAS  Google Scholar 

  30. Idem, ibid. 34 (1973) 1157.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabrowski, L. Multiparticle clusters and carbon superstructure in martensite. JOURNAL OF MATERIALS SCIENCE 30, 693–700 (1995). https://doi.org/10.1007/BF00356329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356329

Keywords

Navigation