Skip to main content
Log in

Cyclic fatigue in monolithic alumina: mechanisms for crack advance promoted by frictional wear of grain bridges

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructural basis of cyclic fatigue-crack propagation in monolithic alumina has been investigated experimentally and theoretically. A true cyclic fatigue effect has been verified, distinct from environmentally assisted slow crack growth (static fatigue). Microstructures with smaller grain sizes were found to promote faster crack-growth rates; growth rates were also increased at higher load ratios (i.e. ratio of minimum to maximum applied loads). Using in situ crack-path analysis performed on a tensile loading stage mounted in the scanning electron microscope, grain bridging was observed to be the primary source of toughening by crack-tip shielding. In fact, crack advance under cyclic fatigue appeared to result from a decrease in the shielding capacity of these bridges commensurate with oscillatory loading. It is proposed that the primary source of this degradation is frictional wear at the boundaries of the bridging grains, consistent with recently proposed bridging/degradation models, and as seen via fractographic and in situ analyses; specifically, load versus crack-openingdisplacement hysteresis loops can be measured and related to the irreversible energy losses corresponding to this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Wiederhorn, B. J. Hockey and D. E. Roberts, Philos. Mag. 28 (1973) 783.

    CAS  Google Scholar 

  2. L. S. Williams, Trans. Br. Ceram. Soc. 55 (5) (1956) 287.

    CAS  Google Scholar 

  3. B.K. Sarkar and T. G. T. Glinn, ibid. 69 (5) (1970) 199.

    CAS  Google Scholar 

  4. D. A. Krohn and D. P. H. Hasselman, J. Am. Ceram. Soc. 55 (1972) 208.

    CAS  Google Scholar 

  5. F. Guiu, J. Mater. Sci. Lett. 13 (1978) 1357.

    CAS  Google Scholar 

  6. E. B. Shand, Am. Ceram. Soc. Bull. 38 (1959) 653.

    Google Scholar 

  7. A. G. Evans and E. R. Fuller, Metall. Trans. 5 (1974) 27.

    Google Scholar 

  8. R. O. Ritchie and R. H. Dauskardt, J. Ceram. Soc. Jpn 99 (1991) 1047.

    CAS  Google Scholar 

  9. S. Horibe and R. Hirahara, Acta Metall. Mater. 39 (1991) 1309.

    CAS  Google Scholar 

  10. T. Hoshide, T. Ohara and T. Yamada, Int. J. Fract. 37 (1988) 47.

    CAS  Google Scholar 

  11. F. Guiu, M. J. Reece and D. A. J. Vaughan, J. Mater. Sci. 26 (1991) 3275.

    CAS  Google Scholar 

  12. H. Kishimoto, JSME Int. J. 34 (1991) 393.

    CAS  Google Scholar 

  13. S. Suresh, J. Hard Mater. 2 (1991) 29.

    CAS  Google Scholar 

  14. F. Guiu, M. Li and M. Reece, J. Am. Ceram. Soc. 75 (1992) 2976.

    CAS  Google Scholar 

  15. S. Lathabai, Y. Mai and B. Lawn, ibid. 72 (1989) 1760.

    CAS  Google Scholar 

  16. T. Kawakubo and K. Komeya, ibid. 70 (1987) 400.

    CAS  Google Scholar 

  17. R. Knehans and R. Steinbrech, J. Mater. Sci. Lett. 1 (1982) 327.

    CAS  Google Scholar 

  18. P. Becher, J. Am. Ceram. Soc. 74 (1991) 255.

    CAS  Google Scholar 

  19. S. J. Bennison and B. R. Lawn, Acta Metall. Mater. 37 (1989) 2659.

    CAS  Google Scholar 

  20. A. G. Evans and K. T. Faber, J. Am. Ceram. Soc. 67 (1984) 255.

    Google Scholar 

  21. R. M. McMeeking and A. G. Evans, ibid. 65 (1982) 242.

    Google Scholar 

  22. J. Rödel, J. Eur. Ceram. Soc. 9 (1992) 323.

    Google Scholar 

  23. R. H. Dauskardt, Acta Metall. Mater. 41 (1993) 2765.

    CAS  Google Scholar 

  24. S. Lathabai, J. Rödel and B. Lawn, J. Am. Ceram. Soc. 74 (1991) 1360.

    Google Scholar 

  25. P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y-W. Mai and B. J. Hockey, ibid. 70 (1987) 279.

    CAS  Google Scholar 

  26. J. Rödel, J. Kelly and B. Lawn, ibid. 73 (1990) 3313.

    Google Scholar 

  27. G. Vekinis, M. F. Ashby and P. W. R. Beaumont, Acta Metall. Mater. 38 (1990) 1151.

    CAS  Google Scholar 

  28. H. E. Lutz, X. Z. Hu and M. V. Swain, J Eur. Ceram. Soc. 9 (1992) 133.

    CAS  Google Scholar 

  29. Y. Maniette, M. Inagaki and M. Sakai, ibid. 7 (1991) 255.

    CAS  Google Scholar 

  30. D. C. Salmon and D. W. Hoeppner, in “Second Symposium on Cyclic Deformation, Fracture, and Nondestructive Evaluation of Advanced Materials,” Miami, November 1992, edited by M. R. Mitchell and O. Buck, STP 1184 (American Society for Testing and Materials, Philadelphia, PA, 1994).

    Google Scholar 

  31. C.-W. Li, D.-J. Lee and S.-C. Lui, J. Am. Ceram. Soc. 75 (1992) 1777.

    CAS  Google Scholar 

  32. A. G. Evans, Mater. Sci. Eng. A143 (1991) 63.

    Google Scholar 

  33. H. Cai, K. T. Faber and E. R. Fuller, Jr, J. Am. Ceram. Soc. 75 (1992) 3111.

    CAS  Google Scholar 

  34. J. C. Hay and K. W. White, ibid. 76 (1993) 1849.

    CAS  Google Scholar 

  35. T. Tanaka, N. Okabe and Y. Ishimaru, J. Soc. Mater. Sci. Jpn 38 (1989) 137.

    CAS  Google Scholar 

  36. D. Rouby and P. Reynaud, Compos. Sci. Technol. 48 (1993) 109.

    CAS  Google Scholar 

  37. R. H. Dauskardt and R. O. Ritchie, Closed Loop 17 (1989) 7.

    Google Scholar 

  38. R. O. Ritchie and W. Yu, in “Small Fatigue Cracks”, edited by R. O. Ritchie and J. Lankford (The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, Warrendale, PA, 1986) p. 167.

    Google Scholar 

  39. H. N. Ko, J. Mater. Sci. Lett. 5 (1986) 464.

    CAS  Google Scholar 

  40. Idem, ibid. 8 (1989) 1438.

    CAS  Google Scholar 

  41. P. C. Paris and F. Erdogan, J. Bas. Eng. Trans. ASME 85 (1963) 528.

    CAS  Google Scholar 

  42. Y. W. Mai and B. R. Lawn, J. Am. Ceram. Soc. 70 (1987) 289.

    CAS  Google Scholar 

  43. A. G. Evans and R. M. McMeeking, Acta Metall. Mater. 34 (12) (1986) 2435.

    Google Scholar 

  44. T. E. Fischer, M. P. Anderson, S. Jahanmir and R. Salher, in “Wear of Materials 1987”, Vol. 1, edited by K. C. Ludema (Asme, New York, 1987) p. 257.

    Google Scholar 

  45. N. Wallbridge, D. Dowson and E. W. Roberts, in “Wear of Materials 1983”, edited by K. C. Ludema (ASME, New York, 1983) p. 202.

    Google Scholar 

  46. R. H. VanStone, Mater. Sci. Eng. A103 (1988) 49.

    Google Scholar 

  47. B. N. Cox and D. B. Marshall, Acta Metall. 39 (1991) 579.

    Google Scholar 

  48. H. Tada, P. C. Paris and G. R. Irwin, “The Stress Analysis of Cracks Handbook”, Part III (Paris Productions, St Louis, 1985).

    Google Scholar 

  49. W. Elber, Eng. Fract. Mech. 2 (1970) 37.

    Google Scholar 

  50. S. Suresh and R. O. Ritchie, in “Fatigue Crack Growth Threshold Concepts”, edited by S. Suresh and D. L. Davidson (The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, Warrendale, PA, 1984) p. 227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, C.J., Petrany, R.N., Ritchie, R.O. et al. Cyclic fatigue in monolithic alumina: mechanisms for crack advance promoted by frictional wear of grain bridges. JOURNAL OF MATERIALS SCIENCE 30, 643–654 (1995). https://doi.org/10.1007/BF00356324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356324

Keywords

Navigation