Skip to main content
Log in

Calculated elastic constants of alumina-mullite ceramic particles

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using two theoretical models, we estimated the isotropic elastic constants of an alumina-mullite ceramic composite. The alumina phase, 20% by volume, consisted of brickshaped particles with a 4:1 aspect ratio embedded in a mullite matrix (mullite = 3Al2O3·2SiO2). We took alumina elastic-constant values from the literature, and we measured mullite's elastic constants using a megahertz-frequency pulse-echo method. The two theoretical models, Datta-Ledbetter and Mori-Tanaka, proceed from very different viewpoints. The Datta-Ledbetter model uses the long-wavelength limit of a scattered plane wave ensemble-average approach. The model estimates the speed of a plane harmonic wave, averages the scattered field by the Waterman-Truell procedure and uses Lax's quasicrystalline approximation to sum over pairs. The Mori-Tanaka method proceeds by estimating the average matrix stress in a material containing ellipsoidal inclusions. For randomly oriented ellipsoids, it extends Eshelby's solution for a single ellipsoidal inclusion. Both models lack adjustable parameters. Surprisingly, the two models with different physical approaches give practically identical results. A rough check on our estimates is that they lead to correct predictions of the elastic constants of an alumina-mullite-particle aluminium-matrix composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ledbetter, S. Kim and W. Kriven, J. Amer. Ceram. Soc. in press.

  2. W. Tefft, J. Res. Nat. Bur. Stands. 70A (1966) 277.

    Article  CAS  Google Scholar 

  3. H. Ledbetter, in “Dynamic Elastic-Modulus Measurements” (ASTM, Philadelphia, 1990) p. 135.

    Book  Google Scholar 

  4. H. Ledbetter and S. Datta, J. Acoust. Soc. Amer. 79 (1986) 239.

    Article  CAS  Google Scholar 

  5. Idem, Z. Metallkde. 83 (1992) 195.

    CAS  Google Scholar 

  6. J. Willis, in “Advances in Supplied Mechanics”, Vol. 21 (Academic, New York, 1981) p. 1.

    Google Scholar 

  7. H. Ledbetter and S. Datta, JSME Int. J. 34 (1991) 194.

    CAS  Google Scholar 

  8. H. Ledbetter and C. Fortunko, in “IEEE Ultrasonics Symposium” (IEEE, New York, 1991) p. 1065.

    Google Scholar 

  9. W. Voigt, Ann. Phys. 38 (1889) 573.

    Article  Google Scholar 

  10. A. Reuss, Angew. Math. Mech. 9 (1929) 49.

    Article  CAS  Google Scholar 

  11. J. Eshelby, Proc. Roy. Soc. A241 (1957) 376.

    Article  Google Scholar 

  12. T. Mura, “Micromechanics of Defects in Solids” (Nijhoff, The Hague, 1987) p. 77–84.

    Book  Google Scholar 

  13. T. Mori and K. Tanaka, Acta Metall 21 (1973) 571.

    Article  Google Scholar 

  14. Y. Takao, T. Chou and M. Taya, Trans. ASME 49 (1982) 536.

    Article  CAS  Google Scholar 

  15. M. Taya and R. Arsenault, “Metal Matrix Composites, Thermomechanical Behaviorℰd (Pergamon, Oxford, 1989) p. 32.

    Google Scholar 

  16. Y. Benveniste, Mech. Mater. 6 (1987) 147.

    Article  Google Scholar 

  17. T. Chen, G. Dvorak and Y. Benveniste, J. Appl. Mech. 59 (1992) 539.

    Article  Google Scholar 

  18. J. Willis, J. Mech. Phys. Solids 25 (1977) 185.

    Article  Google Scholar 

  19. G. Weng, Int. J. Engng Sci. 22 (1984) 845.

    Article  Google Scholar 

  20. S. Datta and H. Ledbetter, in “Wave Propagation in Nonhomogeneous Media and Ultrasonic Nondestructive Evaluation” (ASME, New York, 1984) p. 123.

    Google Scholar 

  21. M. Dunn and H. Ledbetter, J. Appl. Mech. in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledbetter, H., Dunn, M. & Couper, M. Calculated elastic constants of alumina-mullite ceramic particles. JOURNAL OF MATERIALS SCIENCE 30, 639–642 (1995). https://doi.org/10.1007/BF00356323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356323

Keywords

Navigation