Skip to main content
Log in

Non-adiabatic polaron hopping conduction in semiconducting V2O5-Bi2O3 oxide glasses doped with BaTiO3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

BaTiO3-doped (5–40 wt %) 90V2O5-10Bi2O3 (VB) glasses have been prepared by a quick quenching technique. The d.c. electrical conductivities, σd.c., of these glasses have been reported in the temperature range 80–450 K. The electrical conductivity of these glasses, which arises due to the presence of V4+ and V5+ ions, has been analysed in the light of the small-polaron hopping conduction mechanism. The adiabatic hopping conduction valid for the undoped VB glasses (with 80–95 mol % V2O5), in the high-temperature region, is changed to a non-adiabatic hopping mechanism in the BaTiO3-doped VB glasses. At lower temperatures, however, a variable range hopping (VRH) mechanism dominates the conduction mechanism in both the glass systems. Such a change-over from adiabatic to non-adiabatic conduction mechanism is a new feature in transition metal oxide glasses. Various parameters, such as density of states at the Fermi level N(EF), electron wave-function decay constant, α, polaron radius, r p, and its effective mass, m *p , etc., have been obtained for all the glass samples from a critical analysis of the electrical conductivity data satisfying the theory of polaron hopping conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Greaves, J. Non-Cryst. Solids 11 (1973) 427.

    Article  CAS  Google Scholar 

  2. C. H. Chung, J. D. Mackenzie and L. Murawski, Rev. Chem. Miner. 16 (1979) 308.

    CAS  Google Scholar 

  3. C. H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids 42 (1980) 151.

    Article  Google Scholar 

  4. A. Ghosh and B. K. Chaudhuri, ibid. 83 (1986) 151.

    Article  CAS  Google Scholar 

  5. H. Hirashima, Y. Watanabe and T. Yoshida, ibid. 95/96 (1987) 826.

    Google Scholar 

  6. J. Livage, J. P. Jolivet and E. Trone, ibid 121 (1990) 35.

    Article  CAS  Google Scholar 

  7. H. Gahlman and R. Bruckner, ibid 13 (1974) 355.

    Article  Google Scholar 

  8. A. Ghosh and B. K. Chaudhuri, in “Proceedings of the National Seminar on Semiconductor and Devices”, Calcutta (1986) p. 28.

  9. A. Ghosh, J. Appl. Phys. 64 (1988) 2652.

    Article  CAS  Google Scholar 

  10. Y. Sakuri and J. Yamaki, J. Electrochem. Soc. 12 (1985) 512.

    Article  Google Scholar 

  11. S. Nakamura and N. Ichinose, J. Non-Cryst. Solids 94/95 (1987) 849.

    Article  Google Scholar 

  12. A. Ghosh and B. K. Chaudhuri, J. Mater. Sci. 22 (1985) 2369.

    Article  Google Scholar 

  13. I. G. Austin and N. F. Mott, Adv. Phys. 18 (1969) 41.

    Article  CAS  Google Scholar 

  14. R. Wernickle, in “Grain boundary phenomena in Electronic ceramics”, Vol. I, Edited by L. H. Leison (American Ceramic Society) Westerville, OH, 1981) p. 261.

    Google Scholar 

  15. Sahana Chakraborty, A. K. Bera, S. Mollah and B. K. Chaudhuri, J. Mater. Res. 9 (1994) 1932.

    Article  CAS  Google Scholar 

  16. G. Arlt, D. Hennings and G. de With, J. Appl. Phys. 58 (1985) 1619.

    Article  CAS  Google Scholar 

  17. K. K. Som and B. K. Chaudhuri, Phys. Rev. B 41 (1990) 1581.

    Article  CAS  Google Scholar 

  18. Y. Kawamoto, M. Fukuzuko, Y. Ohta and M. Imai, Phys. Chem. Glasses 20 (1979) 54.

    CAS  Google Scholar 

  19. S. Chakraborty, S. Sadhukhan, K. K. Som, H. S. Maiti and B. K. Chaudhuri, Phil. Mag. B (1995) in press.

  20. N. F. Mott, J. Non-Cryst. Solids 1 (1968) 1.

    Article  CAS  Google Scholar 

  21. M. Sayer and A. Mansingh, Phys. Rev. B 6 (1972) 4629.

    Article  CAS  Google Scholar 

  22. B. K. Chaudhuri, K. Chaudhuri and K. K. Som, J. Phys. Chem. Solids. 50 (1989) 1137.

    Article  CAS  Google Scholar 

  23. C. H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids 42 (1980) 357.

    Article  CAS  Google Scholar 

  24. S. Mollah, K. K. Som, K. Bose, A. K. Chakraborty and B. K. Chaudhuri, Phys. Rev. B 46 (1992) 11075.

    Article  CAS  Google Scholar 

  25. I. G. Austin and E. S. Garbett, in “Electronic and structural properties of amorphous semiconductors”, edited by P. G. Lecomber and J. Mort (Academic Press, London, New York) p. 393.

  26. T. Holstein, Ann. Phys. (N.Y) 8 (1959) 325.

    Article  CAS  Google Scholar 

  27. Idem, ibid. 8 (1959) 343.

    Article  CAS  Google Scholar 

  28. V. N. Bogomolov, E. K. Kudinev and U. N. Firsov, Sov. Phys. Solid State 9 (1968) 2502; (Fizika Tverodogo Tela. 9(1967) 3175).

    Google Scholar 

  29. A. Miller and E. Abrahams, Phys. Rev. 120 (1960) 745.

    Article  CAS  Google Scholar 

  30. D. Emin and T. Holstein, Ann. Phys. (N.Y.) 53 (1969) 439.

    Article  Google Scholar 

  31. N. F. Mott and E. A. Davis, in “Electronic processes in non-crystalline materials”, 2nd Ed (Clarendon, Oxford, 1979).

    Google Scholar 

  32. G. P. Triberis, J. Non-Cryst. Solids 74 (1985) 1.

    Article  Google Scholar 

  33. G. P. Triberis and L. R. Friedman, J. Phys. C Solid State Phys. 14 (1981) 4631.

    Article  CAS  Google Scholar 

  34. J. Schnakenberg, Phys. Status Solidi 28 (1968) 623.

    Article  CAS  Google Scholar 

  35. G. E. Pike, Phys. Rev. B 6 (1972) 1572.

    Article  CAS  Google Scholar 

  36. A. R. Long, Adv. Phys. 31 (1982) 553.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, S., Sadhukhan, M., Modak, D.K. et al. Non-adiabatic polaron hopping conduction in semiconducting V2O5-Bi2O3 oxide glasses doped with BaTiO3 . JOURNAL OF MATERIALS SCIENCE 30, 5139–5145 (1995). https://doi.org/10.1007/BF00356061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356061

Keywords

Navigation