Skip to main content
Log in

Stress-strain rate relations for high-temperature deformation of two-phase Al-Cu alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Al-Cu alloys containing 6, 11, 17, 24 and 33 wt% Cu, annealed for 0.5–100 h, were deformed by the differential strain-rate test technique over a strain-rate range of ≈4×10−6 to 3×10−2s−1 at temperatures ranging from 460–540°C. Superplastic behaviour, with strain-rate sensitivity, m≈0.5, and activation energy, Q=171.5 kJ mol−1, is shown by the Al-24Cu and Al-33Cu alloys at lower strain rates and higher temperatures. All the alloys show m≲0.20 at higher strain rates, but the average activation energy for deformation of the Al-6Cu, Al-11Cu, and Al-17Cu alloys is evaluated to be 480.7 kJ mol−1, in contrast to a lower value of 211 kJ mol−1 for the Al-24Cu and Al-33Cu alloys. Instead of grain size, the mean free path between θ particles is suggested to be a more appropriate microstructural parameter for the constitutive relationship for deformation of the Al-Cu alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Mukherjee, J. E. Bird and J. E. Dorn, Trans. ASM 62 (1969) 155.

    CAS  Google Scholar 

  2. J. W. Edington, K. N. Melton and C. P. Cutler, Prog. Mater. Sci. 21 (1976) 61.

    Article  CAS  Google Scholar 

  3. M. Suéry and B. Baudelet, Res. Mech. 2 (1981) 163.

    Google Scholar 

  4. M. Kobayashi and M. Miyagawa, Trans. ISIJ 27 (1987) 685.

    Article  CAS  Google Scholar 

  5. D. L. Holt and W. A. Backofen, Trans. ASM 59 (1966) 755.

    CAS  Google Scholar 

  6. M. J. Stowell, J. L. Robertson and B. M. Watts, Metal Sci. J. 3 (1969) 41.

    Article  Google Scholar 

  7. R. D. Schmidt-Whitley, Z. Metallkd 64 (1973) 552.

    CAS  Google Scholar 

  8. G. Rai and N. J. Grant, Metall. Trans. 6A (1975) 385.

    Article  CAS  Google Scholar 

  9. K. A. Padmanabhan and G. J. Davies, Metal Sci. 11 (1977) 177.

    Article  CAS  Google Scholar 

  10. Y. Kobayashi, Y. Ishida and M. Kato, Scripta Metall. 11 (1977) 51.

    Article  CAS  Google Scholar 

  11. N. Furushiro and S. Hori, ibid. 12 (1978) 35.

    Article  CAS  Google Scholar 

  12. G. A. Nassef, M. Suery and El-Ashram, Metals Techno. 9 (1982) 355.

    Article  Google Scholar 

  13. B. P. Kashyap and K. Tangri, Metall. Trans. 181A (1987) 417.

    Article  Google Scholar 

  14. E. Sato, K. Kuribayashi and R. Horiuchi, J. Jpn Inst. Metals 53 (1989) 885.

    Article  CAS  Google Scholar 

  15. A. H. Chokshi and T. G. Langdon, Mater. Sci. Technol. 5 (1989) 435.

    Article  CAS  Google Scholar 

  16. J. R. Cahoon, Metal Sci. 9 (1975) 346.

    Article  CAS  Google Scholar 

  17. P. K. Chaudhury and F. A. Mohamed, Mater. Sci. Eng. A 101 (1988) 13.

    CAS  Google Scholar 

  18. G. S. Sohal, Mater. Sci. Technol. 4 (1988) 811.

    Article  CAS  Google Scholar 

  19. P. K. Bakshi and B. P. Kashyap, J. Mater. Sci. 29 (1994) 2063.

    Article  CAS  Google Scholar 

  20. B. I. Edelson and W. M. Baldwin, Trans. ASM 55 (1962) 230.

    CAS  Google Scholar 

  21. M. F. Ashby, Z. Metallkd 55 (1964) 5.

    CAS  Google Scholar 

  22. C. W. Corti, P. Cotterill and G. A. Fitzpatrick, Int. Metall. Rev. 19 (1974) 77.

    Article  CAS  Google Scholar 

  23. A. G. Guy, “Elements of physical metallurgy,” 2nd Edn. (Addison-Wesley, Reading, MA, 1959) p. 297.

    Google Scholar 

  24. D. W. Livesey and N. Ridley, J. Mater. Sci. 27 (1982) 2257.

    Article  Google Scholar 

  25. T. Chanda and G. S. Murty, ibid. 27 (1992) 5931.

    Article  CAS  Google Scholar 

  26. E. O. Hall, Proc. Phys. Soc., Lond. B64 (1951) 747.

    Article  CAS  Google Scholar 

  27. N. J. Petch, J. Iron Steel Inst. 174 (1953) 25.

    CAS  Google Scholar 

  28. D. Dew-Hughes and W. D. Robertson, Acta Metall. 8 (1960) 147.

    Article  CAS  Google Scholar 

  29. P. K. Bakshi and B. P. Kashyap, Scripta Metall. Mater. 29 (1993) 1073.

    Article  CAS  Google Scholar 

  30. B. A. Movchan, Mater. Sci. Eng. A138 (1991) 109.

    Article  CAS  Google Scholar 

  31. O. D. Sherby and J. Wadsworth, Prog. Mater. Sci. 33 (1989) 169.

    Article  CAS  Google Scholar 

  32. S. Hori, N. Furushiro and S. Kawaguchi, J. Jpn Inst. Light Metals 25 (1975) 361.

    Article  CAS  Google Scholar 

  33. T. H. Courtney, “Mechanical behaviour of materials”, (McGraw-Hill, Singapore, 1990) p. 193.

    Google Scholar 

  34. E. Ho and G. C. Weatherly, Acta Metall. 23 (1975) 1451.

    Article  CAS  Google Scholar 

  35. E. A. Brandes (ed.), “Smithells metals reference book”, 6th Edn (Butterworths, London, 1983) p 13.9.

    Google Scholar 

  36. J. Cadek, “Creep in metallic materials”, 1st Edn. (Elsevier, Amsterdam, 1988) pp. 115, 176.

    Google Scholar 

  37. A. W. Thompson, Metall. Trans. 8A (1977) 833.

    Article  CAS  Google Scholar 

  38. O. D. Sherby, R. H. Klundt and A. K. Miller, ibid. 8A (1977) 843.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakshi, P.K., Kashyap, B.P. Stress-strain rate relations for high-temperature deformation of two-phase Al-Cu alloys. JOURNAL OF MATERIALS SCIENCE 30, 5065–5072 (1995). https://doi.org/10.1007/BF00356050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356050

Keywords

Navigation