Skip to main content
Log in

Seasonal changes of benthic bacteria in a seagrass bed (Posidonia oceanica) of the Ligurian Sea in relation to origin, composition and fate of the sediment organic matter

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Variations in number and biomass of benthic bacteria were examined in the surface sediments of a Mediterranean seagrass bed [Posidonia oceanica (L.) Delile] in the Gulf of Marconi (northwestern Mediterranean Sea) from 1990 to 1991. The annual dynamics of benthic bacterial density and biomass were compared to changes in elemental (organic C and total N) and biochemical (lipids, proteins, carbohydrates) composition of sediment organic matter, as well as to microphytobenthic biomass, dissolved inorganic nutrients and ATP. Bacterial densities exhibited marked seasonal variations (5.12 to 322.7x108 cells g-1 sediment dry wt) with highest values in late spring. Bacterial standing stocks (15.8 to 882.33 μg C g-1 of sediment dry wt) were high. Bacterial biomass did not correlate with organic C, total N or to specific biochemical components, but correlated significantly with chlorophyll a, ATP and porewater phosphate concentrations. There is evidence that benthic bacteria were responding to variations of algal biomass. Bacterial biomass accounted, on average, for 30% of total living carbon (calculated on the basis of the ATP concentrations) and 8.4% of total organic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertelli G, Fabiano M, Danovaro R, Fraschetti S. (1992) Bacteria and macrofauna in different biocoenoses (Ligurian Sea). Atti Cong Ass ital Oceanol Limnol IX: 387–394

    Google Scholar 

  • Alongi DM (1990) Bacterial growth rates, production and estimates of detrital carbon utilization in deep-sea sediments of the Solomon and Coral Seas. Deep-Sea Res 37: 731–746

    Google Scholar 

  • Barnes H, Blackstock J (1973) Estimation of lipids in marine animals and tissue: detailed investigation of the sulphophosphovanilin method for “total” lipids. J exp mar Biol Ecol 12: 103–118

    Google Scholar 

  • Bavestrello G, Cattaneo-Vietti R, Danovaro R, Fabiano M (1991) Detritus rolling down a vertical cliff of the Ligurian Sea (Italy): the ecological role in hard bottom communities. Pubbl Staz zool Napoli (I: Mar Ecol) 12 (4): 281–292

    Google Scholar 

  • Bianchi AJM (1973) Variations de la concentration bactérienne dans les eaux et les sédiments littoraux. Mar Biol 22: 23–29

    Google Scholar 

  • Bligh EG, Dyer W (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37: 911–917

    Google Scholar 

  • Boyer M (1991) Variazione annuale di produzione primaria, biomassa e produzione batterica in una prateria di Posidonia oceanica del Golfo del Tigullio (Mar Ligure). PhD Thesis, University of Genova, Genova

    Google Scholar 

  • Bulleid NC (1977) An improved method for extraction of adenosine triphosphate from marine sediment and seawater. Limnol Oceanogr 1: 174–178

    Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72: 248–254

    Google Scholar 

  • Cammen LM, Walker JA (1986) The relationship between bacteria and micro-algae of a Bay of Fundy mudflat. Estuar cstl Shelf Sci 22: 91–99

    Google Scholar 

  • Dale NC (1974) Bacteria in intertidal sediments: factors related to their distribution. Limnol Oceanogr 19: 509–518

    Google Scholar 

  • Danovaro R (1993) Analisi della dinamica e della struttura trofica di comunità meiobentoniche in relazione al contenuto ed alla composizione della sostanza organica particellata (Mar Ligure). PhD Dissertation, University of Pisa, Pisa

  • Danovaro R, Boyer M, Fabiano M (1992) Benthic bacterial abundance and distribution in different areas of the Mediterraean Sea: relationships with organic matter. Rapp. Réun Commn int Explor scient Mer Méditerr 33: 34

    Google Scholar 

  • Danovaro R, Fabiano M, Della Croce N (1993) Labile organic matter and microbial biomasses in deep sea sediments (Eastern Mediterranean Sea). Deep-Sea Res 40 (5): 953–965

    Google Scholar 

  • Danovaro R, Fabiano M, Femino' A (1994) Comparison of different methods for counting bacteria in marine sediments. Boll Ist Mus Univ Genova 58–59: 5–14

    Google Scholar 

  • Daumas RA, Laborde P, Paul R, Romano JC, Sautriot D (1978) Les mécanismes de transformation de la matière oranique en Atlantique intertropical Etude de la minéralisation et de la diagénèse dans les sédiments superficiels In: Combaz A, Pelet R (eds) Géochimie organique des sédiments marins profonds, Orgon II. CNRS, Paris, pp 1–392

    Google Scholar 

  • De Flaun MF, Mayer LM (1983) Relationships between bacteria and grain surface in intertidal sediments. Limnol Oceanogr 28 (5): 873–881

    Google Scholar 

  • Delille D, Bouvy M (1989) Bacterial response to natural organic inputs in a marine subantartict area. Hydrobiologia 182: 225–238

    Google Scholar 

  • Delille D, Guidi LD, Cahet G (1990) Temporal variations of benthic bacterial microflora on the North Western Mediterranean continental shelf and slope. Pubbl Staz zool Napoli (I: Mar Ecol) 11: 105–115

    Google Scholar 

  • Draper N, Smith H (1981) Applied regression analysis, 2nd Edn. Wiley, New York

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analyt Chem 28: 350–356

    Google Scholar 

  • Duyl van FC, Kop AJ (1990) Seasonal patterns of bacterial production and biomass in intertidal sediments of the western Dutch Wadden Sea. Mar Ecol Prog Ser 59: 249–261

    Google Scholar 

  • Fabiano M, Danovaro R (1994) Composition of organic matter in sediments facting a river estuary (Tyrrhenian Sea): relationships with bacteria and microphytobenthic biomass. Hydrobiologia 277: 71–84

    Google Scholar 

  • Ferrara-Guerrero MJ, Bianchi A (1990) Distribution of microaerophilic bacteria through the oxic-anoxic transition zone of lagoon sediments. Hydrobiologia 207: 147–152

    Google Scholar 

  • Fichez R (1991) Composition and fate of organic matter in submarine cave sediments; implications for the biogeochemical cycle of organic carbon. Oceanol Acta 14 (4): 369–377

    Google Scholar 

  • Fry JC (1988) Determination of biomass In: Austin B (ed) Methods in Aquatic Bacteriology. Wiley & Sons, New York, pp 27–72

    Google Scholar 

  • Fuhrman JA, Ammerman JW, Azam F (1980) Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationship with phytoplankton. Mar Biol 60: 201–207

    Google Scholar 

  • Gerchakov SM, Hatcher PG (1972) Improved technique for analysis of carbohydrates in sediments. Limnol Oceanogr 17: 938–943

    Google Scholar 

  • Graf G, Meyer-Reil LA (1985) Remineralization of organic substances on benthic surfaces in the intertidal reef area off Mactan, Cebu, Philippines. Philipp Scient 22: 42–46

    Google Scholar 

  • Griffiths RP, Hayasaka SS, McNamara TM, Morita RY (1978) Relative microbial activity and bacteria concentrations in water and sediment samples taken in the Beaufort Sea. Can J Microbiol 24: 1217–1226

    Google Scholar 

  • Hargrave BT (1969) Epibenthic algal production and community respiration in the sediments of Marion lake. J Fish Bd Can 26: 2003–2026

    Google Scholar 

  • Hartree EF (1972) Determination of proteins: a modification of the Lowry method that gives a linear photometric response. Alalyt Biochem 48: 422–427

    Google Scholar 

  • Hedges JI, Stern JH (1983) Carbon and nitrogen determination of carbonate-containing solids. Limnol Oceanogr 29: 657–668

    Google Scholar 

  • Herndl GJ, Faganelli J, Fanuko N, Peduzzi P, Turk V (1987) Role of bacteria in the carbon and nitrogen flow between water-column and sediment in a shallow marine bay (Bay of Piran, Northern Adriatic Sea). Pubbl Staz zool Napoli (I: Mar Ecol) 8: 221–236

    Google Scholar 

  • Herndl GJ, Peduzzi P, Fanuko N (1989) Benthic community metabolism and microbial dynamics in the Gulf of Trieste (Northern Adriatic Sea). Mar Ecol Prog Ser 53: 169–178

    Google Scholar 

  • Horrigan SG, Hagström A, Koike I, Azam F (1988) Inorganic nitrogen utilization by assemblages of marine bacteria in seawater culture. Mar Ecol Prog Ser 50: 147–150

    Google Scholar 

  • Johnson RG (1977) Vertical variation in particulate organic matter in the upper twenty centimeters of marine sediments. J mar Res 35: 272–282

    Google Scholar 

  • Jonge VE de (1980) Fluctuations in the organic carbon to chlorophyll a ratios for estuarine benthic diatom populations. Mar Ecol Prog Ser 2: 345–353

    Google Scholar 

  • Jonge VE de (1985) Occurrence of “epipsammic” diatoms populations: a result of interaction between physical sorting of sediment and certains properties of diatom species. Estuar cstl Shelf Sci 21: 607–622

    Google Scholar 

  • Jonge VE de, Van den Bergs J (1987) Experiments on resuspension of estuarine sediments controlling benthic diatoms. Estuar cstl Shelf Sci 24: 725–740

    Google Scholar 

  • Karl DM, Craven DB (1980) Effect of alkaline phosphatase activity on nucleotide measurements in aquatic microbial communities. Appl envirl Microbiol 40: 549–561

    Google Scholar 

  • Khripounoff A, Crassous P, Desbruyeres D, Le Cox JR (1985) Le flux organique particulaire et ses transformations a l'interface eau-sediment. In: Laubier L, Monniot C (eds) Peuplements profonds du Golfe de Gascogne. IFREMER Publications, Brest, France, pp 101–118

    Google Scholar 

  • Kirchman D, Soto Y, Van Wambeke F, Bianchi M (1989) Bacterial production in the Rhône River plume: effect of mixing on relationships among microbial assemblages. Mar Ecol Prog Ser 53: 267–275

    Google Scholar 

  • Lawrence JM, Boudouresque Ch-F, Maggiore F (1989) Proximate constituentes, biomass, and energy in Posidonia oceanica (Potamogetonaceae). Pubbl Staz zool Napoli (I: Mar Ecol) 10: 263–270

    Google Scholar 

  • Lorenzen C, Jaffrey J (1980) Determination of chlorophyll in sea water. Tech Pap mar Sci (UNESCO) 35: 1–20

    Google Scholar 

  • Marsh JB, Weinstein WJ (1966) A simple charring method for determination of lipids. J Lipid Res 7: 574–576

    Google Scholar 

  • Meyer-Reil L-A (1983) Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight. II. Analysis of benthic bacterial populations. Mar Biol 77: 247–256

    Google Scholar 

  • Meyer-Reil L-A (1984) Bacterial biomass and heterotrophic activity in sediments and overlying waters. In: Hobbie JE, Williams PJ LeB. (eds) Heterotrophic activity in the sea. Plenum Press, New York, pp 523–546

    Google Scholar 

  • Meyer-Reil L-A (1986) Spatial and temporal distribution of bacterial populations in marine shallow water surface sediments. In: Lasserre P, Martin JM (eds) Biogeochemical processes at the land-sea boundary. Elsevier, Amsterdam, pp 141–160

    Google Scholar 

  • Meyer-Reil L-A (1987) Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl envirl Microbiol 53: 1748–1755

    Google Scholar 

  • Meyer-Reil L-A, Bölter M, Dawson G, Liebezeit G, Szwerinski H, Wolter K (1980) Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect. Appl envirl Microbiol 39: 797–802

    Google Scholar 

  • Montagna PA (1982) Sampling design and enumeration statistics for bacteria from marine sediments. Appl envirl Microbiol 43: 1366–1372

    Google Scholar 

  • Montagna PA (1984) In situ measurement of meiobenthic grazing rates on seciment bacteria and edaphic diatoms. Mar Ecol Prog Ser 18: 119–130

    Google Scholar 

  • Montagna PA, Coull CB, Herring TL, Dudley BW (1983) The relationship between abundances of Meiofauna and their suspected microbial food (diatoms and bacteria). Estuar cstl Shelf Sci 17: 381–394

    Google Scholar 

  • Moriarty DJW (1980) Measurement of bacterial biomass in sandy sediments In: Trudiner PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Australian Academy of Sciences, Camberra and Springer Verlag, Berlin, pp 131–138

    Google Scholar 

  • Morarty DJW, Pollard PC (1981) DNA sysnthesis as measure of bacterial productivity in seagrass sediments. Mar Ecol Prog Ser 5: 151–156

    Google Scholar 

  • Moriarty DJW, Pollard PC (1982) Diel variation of bacterial productivity in seagrass (Zoostera capricorni) beds measured by rate thymidine incorporation inot DNA. Mar Biol 72: 165–173

    Google Scholar 

  • Moriarty DJW, Roberts DG, Pollard PC (1990) Primary and bacterial productivity of tropical seagrass communities in the Gulf of Carpentaria, Australia. Mar Ecol Prog Ser 61: 145–157

    Google Scholar 

  • Newell RC, Field JG (1983) The contribution of bacteria and detritus to carbon and nitrogen flow in a benthic community. Mar Biol Lett 4: 23–36

    Google Scholar 

  • Novak R (1984) A study in ultra-ecology: microorganisms on the seagrass Posidonia oceanica (L.) Delile. Pubbl Staz zool Napoli (I: Mar Ecol) 5: 143–190

    Google Scholar 

  • Ott J (1980) Growth and production in Posidonia oceanica (L.) Delile. Pubbl Staz zool Napoli (I: Mar Ecol) 1: 47–64

    Google Scholar 

  • Pamatman MM (1968) Ecology and metabolism of a benthic community on an intertidal sand flat. Int Rev ges Hydrobiol 53: 211–298

    Google Scholar 

  • Parker RR, Siebert J, Brown TJ (1975) Inhibition of primary productivity through heterotrophic competition for nitrate in a stratified estuary. J Fish Res Bd Can 32: 72–77

    Google Scholar 

  • Parsons TR, Albright LJ, Whitney F, Wong CS, Williams PJ LeB (1981) The effect of glucose on the productivity of seawater: an experimental approach using controlled aquatic ecosystems. Mar envirl Res 4: 229–242

    Google Scholar 

  • Plante R, Plante-Cuny MR, Reys JP (1986) Photosynthetic pigments of sandy sediments on the north Mediterranean coast: their spatial distribution and its effect on sampling strategies. Mar Ecol Prog Ser 34: 133–141

    Google Scholar 

  • Rice DL (1982) The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Mar Ecol Prog Ser 9: 153–162

    Google Scholar 

  • Sargent JR, Hopkins CCE, Seiring JV, Youngson A (1983) Partial characterization of organic material in surface sediments from Balsfjorden, northern Norway, in relation to its origin and nutritional value for sediment-ingesting animals. Mar Biol 76: 87–94

    Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fish Res Bd Can Bull 167: 1–310

    Google Scholar 

  • Tanoue E, Handa N (1987) Monosaccharide composition of marine particles and sediments from the Bering Sea and North pacific. Oceanol Acta 10: 91–99

    Google Scholar 

  • Tufano M (1991) Il rapporto isotopico 13C/12C (delta 13C) nello studio dell' ecosistema bentonico costiero (Mar Ligure). PhD Thesis, University of Genova, Genova

    Google Scholar 

  • Van Wambeke F, Bianchi M, Cahet G (1984) Short-term bacterial reactivity of nitrogen-enriched seawater of an eutrophic lagoon. Estuar cstl Shelf Sci 19: 291–301

    Google Scholar 

  • Velimirov B (1986) DOC dynamics in a Mediterranean seagrass system. Mar Ecol Prog Ser 28: 21–41

    Google Scholar 

  • Velimirov B (1987) Organic matter derived from a seagrass meadow: origin, properties and quality of particles. Pubbl Staz zool Napoli (I: Mar Ecol) 8: 143–173

    Google Scholar 

  • Velimirov B (1989) Il ruolo dei batteri nei flussi di energia: un approccio ecosistemico. Oebalia (Taranto, Italy) 16: 25–46

    Google Scholar 

  • Velimirov B, Walenta-Simon M (1992) Seasonal changes in specific growth rates, production and biomass of a bacterial community in the water column above a Mediterranean seagrass system. Mar Ecol Prog Ser 80: 237–248

    Google Scholar 

  • Velimirov B, Walenta-Simon M (1993) Bacterial growth rates and productivity within a seagrass system: seasonal variations in a Posidonia oceanica bed. Mar Ecol Prog Ser 96: 101–107

    Google Scholar 

  • Velimirov B, Ott JA, Novak R (1981) Microorganisms on macrophyte debris: biodegradation and its implication in the food web. Kieler Meeresforsch (Sonderh) 5: 333–344

    Google Scholar 

  • Weise W, Reinheimer G (1979) Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sediments. Microb Ecol 4: 175–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Sarà, Genova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danovaro, R., Fabiano, M. & Boyer, M. Seasonal changes of benthic bacteria in a seagrass bed (Posidonia oceanica) of the Ligurian Sea in relation to origin, composition and fate of the sediment organic matter. Marine Biology 119, 489–500 (1994). https://doi.org/10.1007/BF00354310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354310

Keywords

Navigation