Skip to main content
Log in

Solid-state deformation of polytetrafluoroethylene powder

Part I Extrusion drawing

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polytetrafluoroethylene (PTFE) powder of a high molecular weight (~ 107) was drawn by solid-state extrusion in the temperature range 100–340°C, which covers the glass transition temperature (125°C) and the ambient melting point (334°C). Draw was attainable only above 100°C. The maximum achievable extrusion draw ratio (EDRmax) was almost constant, ~ 10, from 100–280°C, yet increased rapidly with further increasing temperature, reaching a maximum of 60 at 330–340°C. At yet higher temperatures, the drawability was lost due to melting. The structure and properties of drawn products were found to be complexely affected by extrusion temperature and EDR. For extrusion at 330–340°C, near the melting point, an effective and high draw was achieved. The crystalline chain orientation function, crystallite sizes, both along and perpendicular to the chain axis, differential scanning calorimetry heat of fusion, and flexural modulus increased with EDR and approached a maximum at EDR of 30–40, depending on the extrusion temperatures. Above a specific EDR, the efficiency of draw decreased due to the formation of flaws. The highly oriented PTFE consisted of microfibrils of a significantly large lateral dimension (~ 45 nm) compared to those (6–20 nm) generally found in oriented polymers. The modulus of a drawn PTFE was sensitive to the test temperatures, reflecting the reversible crystal/crystal transitions at ~ 19 and 30°C. The optimization of the extrusion conditions resulted in the maximum achieved flexural modulus at 24°C of 20 GPa at an EDR 40 for extrusion at 340°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. E. Zachariades and R. S. Porter (eds), “Strength and Stiffness of Polymers”, Plastic Engineering Series, Vol. 4 (Marcel Dekker, New York, 1983).

    Google Scholar 

  2. I. M. Ward (ed.), “Development in Oriented Polymers-2” (Elsevier Applied Science, London, 1987).

    Google Scholar 

  3. A. E. Zachariades and R. S. Porter (eds), “High Modulus Polymers”, Plastic Engineering Series, Vol. 17 (Marcel Dekker, New York, 1988).

    Google Scholar 

  4. T. Kanamoto and R. S. Porter, in “Integration of Fundamental Polymer Science and Technology”, edited by P. J. Lemstra and L. A. Kleintjens (Elsevier Applied Science, 1989) p. 168.

  5. J. Spmook and J. Pennings, Coll. Polym. Sci. 262 (1984) 712.

    Article  Google Scholar 

  6. P. J. Barham and A. Keller, J. Mater. Sci. 20 (1985) 2281.

    Article  CAS  Google Scholar 

  7. K. Furuhata, T. Yokokawa, C. Seoul and K. Miyasaka, J. Polym. Sci. Polym. Phys. Ed. 24 (1986) 59.

    Article  CAS  Google Scholar 

  8. N. A. J. M. Van Aerle, PhD dissertation, Eindhoven University of Technology, The Netherlands (1989).

    Google Scholar 

  9. N. Gerrits, PhD dissertation, Eindhoven University of Technology (1990).

  10. P. Smith, P. J. Lemstra, B. Calb and A. J. Pennings, Polym. Bull. 1 (1979) 733.

    Article  CAS  Google Scholar 

  11. P. Smith, H. D. Chanzy and B. P. Rotzinger, Polym. Commun. 26 (1985) 258.

    Article  CAS  Google Scholar 

  12. B. P. Rotzinger, H. D. Chanzy and P. Smith, Polymer 30 (1989) 1814.

    Article  CAS  Google Scholar 

  13. A. E. Zachariades, M. P. C. Watts, T. Kanamoto and R. S. Porter, J. Polym. Sci. Polym. Lett. Ed. 17 (1979) 487.

    Google Scholar 

  14. G. T. Pawlikowski, D. J. Mitchell and R. S. Porter, J. Polym. Sci. Polym. Phys. Ed. 26 (1988) 1865.

    Article  CAS  Google Scholar 

  15. T. Kanamoto, T. Ohama, K. Tanaka, M. Takeda and R. S. Porter, Polymer 28 (1987) 1617.

    Article  Google Scholar 

  16. T. Kameda and T. Kanamoto, Polym. Prep. Jpn 42 (1993) P-1478.

    Google Scholar 

  17. F. J. Rahl, M. A. Evanco, R. J. Fredericks and A. C. Reimschuessel, J. Polym. Sci. A-2 10 (1972) 1337.

    Article  CAS  Google Scholar 

  18. S. Yamaguchi, Kobunshi Ronbunshu 39 (1982) 493.

    Article  CAS  Google Scholar 

  19. T. Folda, H. Hoffman, H. Chanzy and P. Smith, Nature 333 (6168) (1988) 55.

    Article  CAS  Google Scholar 

  20. H. W. Starkweather Jr, J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 73.

    Article  CAS  Google Scholar 

  21. R. L. M. Gee and J. R. Collier, Polym. Eng. Sci. 26 (1986) 239.

    Article  Google Scholar 

  22. Mitsui/Du Pont Fluorochemicals Co. Ltd (1993).

  23. M. Kakudo and N. Kasai, “X-Ray Diffraction of Polymers” (Maruzen, Tokyo, 1968).

    Google Scholar 

  24. A. L. Ryland, J. Chem. Educ. 35 (1958) 80.

    Article  CAS  Google Scholar 

  25. C. A. Sperati and H. W. Starkweather Jr, Adv. Polym. Sci. 2 (1961) 465.

    Article  CAS  Google Scholar 

  26. A. J. Waddon and A. Keller, J. Polym. Sci. Polym. Phys. Ed. 28 (1990) 1063.

    Article  CAS  Google Scholar 

  27. Idem, ibid. A. J. Waddon and A. Keller, J. Polym. Sci. Polym. Phys. Ed. 30 (1992) 923.

    Article  CAS  Google Scholar 

  28. S. M. Aharoni and J. P. Sibilia, J. Appl. Polym. Sci. 23 (1979) 133.

    Article  CAS  Google Scholar 

  29. T. Nishino, PhD dissertation, Kobe Univeristy (1990).

  30. T. Yamamoto and T. Hara, Polymer 23 (1982) 521.

    Article  CAS  Google Scholar 

  31. E. S. Clark and L. T. Muus, Z. Kristallogr. 117 (1962) 119.

    Article  CAS  Google Scholar 

  32. D. M. Sadler and P. J. Barham, Polymer 31 (1990) 36.

    Article  CAS  Google Scholar 

  33. Idem, ibid. D. M. Sadler and P. J. Barham, Polymer 31 (1990) 42.

    Google Scholar 

  34. Idem, ibid. D. M. Sadler and P. J. Barham, Polymer 31 (1990) 46.

    Article  CAS  Google Scholar 

  35. A. G. Gibson, G. R. Davies and I. M. Ward, ibid. 19 (1978) 683.

    Article  CAS  Google Scholar 

  36. A. Tsuruta, T. Kanamoto, K. Tanaka and R. S. Porter, J. Polym. Sci. Polym. Phys. Ed. 23 (1985) 429.

    Article  CAS  Google Scholar 

  37. K. O'Leary and P. H. Geil, J. Appl. Phys. 38 (1967) 4169.

    Article  CAS  Google Scholar 

  38. K. Sakaoku and A. Peterline, J. Polym. Sci. A-2 9 (1971) 895.

    Article  CAS  Google Scholar 

  39. M. G. Dobb and D. J. Johnson, in “Development in Oriented Polymers”, edited by I. M. Ward (Elsevier Applied Science, London, 1987) Ch. 4.

    Google Scholar 

  40. J. R. Minter, K. Shimamura and E. L. Thomas, J. Mater. Sci. 16 (1981) 3303.

    Article  CAS  Google Scholar 

  41. A. J. Owen, in “Development in Oriented Polymers”, edited by I. M. Ward (Elsevier Applied Science, London, 1987) Ch. 7.

    Google Scholar 

  42. H. H. Chuah, R. S. Porter, and J. S. Lin, ibid.in “ 19 (1986) 2732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuyama, H., Kanamoto, T. & Porter, R.S. Solid-state deformation of polytetrafluoroethylene powder. JOURNAL OF MATERIALS SCIENCE 29, 6485–6494 (1994). https://doi.org/10.1007/BF00354009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354009

Keywords

Navigation