Skip to main content
Log in

High-temperature creep of yttrium-aluminium garnet single crystals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-temperature creep in single crystals of Y3Al5O12 (YAG) was studied by constant strainrate compression tests. The creep resistance of YAG is very high: a stress of ~ 300 MPa is needed to deform at a strain rate of 10−6 (s−1) at a temperature as high as 1900 K (~0.84 T m, (melting temperature)). YAG deforms using the 〈111〉 {1¯10} slip systems following a power law with stress exponent n ~ 3 and activation energy E* ~ 720 kJ mol−1. However, a small dependence of n on temperature and of E* on stress was observed. This stress-dependence of activation energy combined with the observed dislocation microstructures suggests that the high creep resistance of YAG is due to the difficulty of dislocation glide as opposed to the difficulty of climb. Present dislocation creep data are compared with diffusion creep data and a deformation mechanism map is constructed. Large transition stresses (2−3 GPa for 10 μm grain size) are predicted, implying that deformation of most fine-grained YAG will occur by diffusion creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rabier and H. Garem, in “Deformation of Ceramic Materials II”, edited by R. E. Tressler and R. C. Bradt (Plenum Press, New York, 1984) pp. 187–198.

    Chapter  Google Scholar 

  2. V. G. Govorov, N. N. Voinova, Kh. S. Bagdasarov and E. A. Stepanov, Sov. Phys. Crystallogr. 20 (1976) 598.

    Google Scholar 

  3. G. S. Corman, Final Report on U.S. Air Force Contract No. F33615-87-C-5545, Research and Development Center, General Electric Co., Schenectedy, NY (1990) p. 88.

    Google Scholar 

  4. T. A. Parthasarathy, T.-I. Mah and L. E. Matson, J. Amer. Ceram. Soc. 76 (1993) 29.

    Article  CAS  Google Scholar 

  5. Z. Wang, S. Karato and K. Fujino, Phys. Chem. Minerals, submitted for publication.

  6. T. A. Parthasarathy, T.-I. Mah and K. Keller, J. Amer. Ceram. Soc. 75 (1992) 1756.

    Article  CAS  Google Scholar 

  7. C. H. Carter, Jr., C. A. Stone, R. F. Davis and D. R. Schaub, Rev. Sci. Instr. 51 (1980) 1352.

    Article  CAS  Google Scholar 

  8. H. Garem, J. Rabier and P. Veyssiere, J. Mater. Sci. 17 (1982) 878.

    Article  CAS  Google Scholar 

  9. J. Rabier, P. Veyssiere and J. Grilhe, Phys. Stat. Sol. 35 (1976) 259.

    Article  CAS  Google Scholar 

  10. S. Takeuchi and A. S. Argon, J. Mater. Sci. 11 (1976) 1542.

    Article  CAS  Google Scholar 

  11. J. Ando, K. Fujino and T. Takeshita, Phys. Earth Planet. Inter., in press.

  12. S. Karato, ibid. 55 (1989) 234.

    Article  CAS  Google Scholar 

  13. S. Karato, Z. Wang, B. Liu and K. Fujino, Earth Planet Sci. Lett., submitted for publication.

  14. H. Haneda, Y. Miyazaki and S. Shirasaki, J. Cryst. Growth 68 (1984) 581.

    Article  CAS  Google Scholar 

  15. H. J. Frost and M. F. Ashby, “Deformation Mechanism Maps” (Pergamon, Oxford, 1982), p. 168.

    Google Scholar 

  16. G. W. Groves and A. Kelly, Phil. Mag. 8 (1963) 877.

    Article  CAS  Google Scholar 

  17. J. W. Hutchinson, Proc. R. Soc. Lond. A. 348 (1976) 101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karato, S., Wang, Z. & Fujino, K. High-temperature creep of yttrium-aluminium garnet single crystals. JOURNAL OF MATERIALS SCIENCE 29, 6458–6462 (1994). https://doi.org/10.1007/BF00354004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354004

Keywords

Navigation