Advertisement

Marine Biology

, Volume 6, Issue 4, pp 291–302 | Cite as

The influence of suspension density and temperature on the filtration rate of Hiatella arctica

  • R. M. Ali
Article

Abstract

The rate of filtering Phaeodactylum tricornutum and Isochrysis galbana was measured in Hiatella arctica (L.) by the indirect suspension depletion method monitored by optical density measurement. The filtration rate of H. arctica was found to be 1.412×10−2 l/h/g wet weight at a temperature of 15°C when fed with P. tricornutum, at average cell concentrations up to 3.5×106 cells/ml. The filtration rate dropped almost to zero when the concentration of P. tricornutum reached 11×106 cells/ml. The filtration rate of I. galbana diminished at a much lower cell concentration of 1×106 cells/ml, and almost ceased at 3 to 4×106 cells/ml. In mixed cultures of I. galbana and P. tricornutum, the filtration rate ratio was 0.37 to 1.00, and this was believed to be due to a proportion of the smaller former cells passing through the ostia. However, when resuspended in sea water, I. galbana cells were taken at a rate slightly less than P. tricornutum. The medium in which the I. galbana cells had been grown was inhibitory to the filtering activity of H. arctica, since, when cells of either alga were resuspended in the medium, the filtration rate was considerably reduced. No inhibitory factor existed in either of the original nutrient media. Hence, the importance of using low cell concentrations and of eliminating any inhibitory metabolic products when measuring filtration rates of bivalves is stressed. H. arctica shows a typical activity temperature eurve for a boreo-arctic species, with a steady rise from 0°C to a maximum between 15° and 17°C, and a sharp fall in activity to about zero at 25°C. The rates of filtration of various species at temperatures approaching the optimum were compared after allowance was made for fall in filtration rate with increasing body weight. The results suggested that the Mytilacea had the highest filtration rates and that H. arctica possesses one of the lowest filtration rates recorded.

Keywords

Bivalve Filtration Rate Cell Concentration Increase Body Weight Phaeodactylum Tricornutum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Allen, J. A.: Preliminary experiments on the feeding and excretion of bivalves using Phaeodactylum labelled with 32P. J. mar. biol. Ass. U.K. 42, 609–623 (1962).Google Scholar
  2. Ballantine, D. and J. E. Morton: Filtering, feeding and digestion in the lamellibranch Lasaea rubra. J. mar. biol. Ass. U.K. 35, 241–274 (1956).Google Scholar
  3. Chipman, W. A. and J. G. Hopkins: Water filtration by the bay scallop, Pecten irradians, as observed with the use of radioactive plankton. Biol. Bull. mar. biol. Lab., Woods Hole 107, 80–91 (1954).Google Scholar
  4. Cole, H. A. and B. T. Hepper: The use of neutral red solution for the comparative study of filtration rates of lamellibranchs. J. Cons. perm. int. Explor. Mer 20, 197–204 (1954).Google Scholar
  5. — and E. W. Knight-Jones: Quantative estimation of marine nannoplankton. Nature, Lond. 164, 694–696 (1949).Google Scholar
  6. Collier, A. and S. M. Ray: An automatic proportioning apparatus for experimental study of the effect of chemical solutions on aquatic animals. Science, N.Y. 107, p. 576 (1948).Google Scholar
  7. Coughlan, J. and A. D. Ansell: A direct method for determining the pumping rate of siphonate bivalves. J. Cons. perm. int. Explor. Mer 29, 205–213 (1964).Google Scholar
  8. Damas, D.: Le rôle des organismes dans la formation des vases marines. Annls Soc. géol. Belg. 58, p. 143 (1935).Google Scholar
  9. Davids, C.: The influence of suspensions of micro-organisms of different concentrations on the pumping and retention of food by mussel (Mytilus edulis L.) Neth. J. Sea Res. 2, 233–249 (1964).Google Scholar
  10. Dodgson, R. W.: Report on mussel purification. Fishery Invest., Lond. (Ser. 2) 10 (1), p. 498 (1928).Google Scholar
  11. Drinnan, R. E.: An apparatus for recording the water pumping behaviour of lamellibranchs. Neth. J. Sea Res. 2, 223–232 (1964).Google Scholar
  12. Eales, N. B.: The littoral fauna of Great Britain, 305 pp. Cambridge: University Press 1950.Google Scholar
  13. Flügel, H. und C. Schlieper: Der Einfluß physikalischer und chemischer Faktoren auf die Cilienaktivität und Pumprate der Miesmuschel Mytilus edulis. Kieler Meeresforsch. 18, 51–66 (1962).Google Scholar
  14. Forbes, E. and S. Hanley: A history of the British Mollusca and their shells, 486 pp. London: John van Voorst 1848.Google Scholar
  15. Fox, D. L., H. U. Sverdrup and J. P. Cunningham: The rate of water propulsion by the California mussel. Biol. Bull. mar. biol. Lab., Woods Hole 72, 417–438 (1937).Google Scholar
  16. Galtsoff, P. S.: New methods to measure the rate of flow produced by the gills of oysters and other mollusca. Science, N. Y. 63, 233–234 (1926).Google Scholar
  17. —: Experimental study of the function of the oyster gills and its bearing on the problems of oyster-culture and sanitary control of the oyster industry. Bull. Bur. Fish., Wash. 44, 1–39 (1928a).Google Scholar
  18. —: The effect of temperature on the mechanical activity of the gills of the oyster (Ostrea virginica Gm.) J. gen. Physiol. 11, 415–431 (1928b).Google Scholar
  19. —: Reaction of oysters to chlorination. Res. Rep. U.S. Fish Wildl. Serv. 2, 1–28 (1946).Google Scholar
  20. Grave, C.: The process of feeding in the oyster. Science, N.Y. 44, 178–181 (1916).Google Scholar
  21. Haranghy, L.: Die Muschelvergiftung als biologisches Problem auf Grund der neueren diesbezüglichen Ursachenforschung. Helgoländer wiss. Meeresunters. 2, 279–352 (1942).Google Scholar
  22. Hersh, G. L.: A method for the study of the water currents of invertebrate ciliary filter feeders. Veliger 2, 77–83 (1960).Google Scholar
  23. Hopkins, A. E.: Experiments on the feeding behaviour of the oyster Ostrea gigas. J. exp. Zool. 64, 469–494 (1933).Google Scholar
  24. Hughes, R. N.: A study of feeding in Scrobicularia plana. J. mar. biol. Ass. U.K. 49, 805–823 (1969).Google Scholar
  25. Hunter, R. W.: The structure and behaviour of Hiatella gallicana (Lamark) and H. arctica (L.) with special reference to the boring habit. Proc. R. Soc. Edinb. (Sect. B) 63, 271–289 (1949).Google Scholar
  26. Jørgensen, C. B.: On the water transport through the gills of bivalves. Acta physiol. scand. 5, 297–304 (1943).Google Scholar
  27. —: The rate of feeding by Mytilus edulis in different kinds of suspensions. J. mar. biol. Ass. U.K. 28, 333–344 (1949).Google Scholar
  28. —: On the relation between water transport and food requirements in some marine filter-feeding invertebrates. Biol. Bull. mar. biol. Lab., Woods Hole 103, 356–363 (1952).Google Scholar
  29. —: Efficiency of particle retention and rate of water transport in undisturbed lamellibranchs. J. Cons. perm. int. Explor. Mer 26, 94–116 (1960).Google Scholar
  30. —: Biology of suspension feeding, 645 pp. New York: Academic Press 1966.Google Scholar
  31. — and E. D. Goldberg: Particle filtration in some ascidians and lamellibranchs. Biol. Bull. mar. biol. Lab., Woods Hole 105, 477–489 (1953).Google Scholar
  32. Kellogg, J. L.: Ciliary mechanisms of lamellibranchs with descriptions of anatomy. J. Morph. 26, 625–701 (1915).Google Scholar
  33. Lebour, M. V.: Notes on the breeding of some lamellibranchs from Plymouth and their larvae. J. mar. biol. Ass. U.K. 23, 119–144 (1938).Google Scholar
  34. Loosanoff, V. L.: On the food selectivity of oysters. Science, N. Y. 110, p. 122 (1949).Google Scholar
  35. — and J. B. Engle: Effect of different concentrations of micro-organisms on the feeding of oysters. (O. virginica) Fishery Bull. Fish Wildl. Serv. U.S. 51, 31–57 (1947).Google Scholar
  36. — and C. A. Nomejko: Feeding of oysters in relation to tidal stages and to periods of light and darkness. Biol. Bull. mar. biol. Lab., Woods Hole 90, 244–264 (1946).Google Scholar
  37. — and F. D. Tommers: Effect of suspended silt and other substances on rate of feeding of oysters. Science, N. Y. 107, 69–70 (1948).Google Scholar
  38. Menzel, R. W.: Some phases of the biology of Ostrea equestris Say. and comparison with Crassostrea virginica (Gmelin) Publs Inst. mar. Sci. Univ. Tex. 4, 69–153 (1955).Google Scholar
  39. Moore, H. F.: Volumetric studies of the food and feeding of oysters. Bull. Bur. Fish., Wash. 28, 1297–1308 (1910).Google Scholar
  40. Nelson, T. C.: Report of the Department of Biology. Rep. biol. Dep. New Jers, agric-Coll. exp. Stn 1920, 317–349 (1921).Google Scholar
  41. —: On the feeding habits of oysters. Proc. Soc. exp. Biol. Med. 21, 90–91 (1923).Google Scholar
  42. —: Water filtration by the oyster and a new hormoe effect thereon. Anat. Rec. 64 (Suppl. 1), p. 68 (1935).Google Scholar
  43. —: Water filtration by the oyster and a new hormone effect upon the rate of flow. Proc. Soc. exp. Biol. Med. 34, 189–190 (1936).Google Scholar
  44. Nightingale, H. W.: Red water organisms — their occurrence and influence upon marine aquatic animals with special reference to shellfish in waters of the Pacific coast, 24 pp. Washington, Seattle: Argus Press 1936.Google Scholar
  45. Park, M.: Studies of marine flagellates. J. mar. biol. Ass. U.K. 28, 255–285 (1949).Google Scholar
  46. Quraishi, F. O.: The effect of temperature on the feeding behaviour of mussels, Mytilus edulis. M. Sc. thesis, 35 pp. Marine Science Laboratories, Menai Bridge, Anglesey, N. Wales 1964.Google Scholar
  47. Rao, K. P.: Rate of water propulsion in Mytilus californianus as a function of latitude. Biol. Bull. mar. biol. Lab., Woods Hole 104, 171–181 (1953).Google Scholar
  48. Rees, C. B.: The identification and classification of lamellibranch larva. Hull. Bull. mar. Ecol. 3 (19), 37–104 (1950).Google Scholar
  49. Rice, T. R. and R. J. Smith: Filtering rates of the hard clam (Venus mercenaria) determined with radioactive plankton. Fishery Bull. Fish Wildl. Ser. U.S. 58, 73–82 (1958).Google Scholar
  50. Segal, E., K. P. Rao and T. W. James: Rate of activity as a function of intertidal height within populations of some littoral molluscs. Nature, Lond. 172, 1108–1109 (1953).Google Scholar
  51. Smith, R. J.: Filtering efficiency of hard clams in mixed suspensions of radioactive phytoplankton. Proc. natn. Shellfish. Ass. 48, 115–124 (1958).Google Scholar
  52. Southward, A. J. and D. J. Crisp: Activity rhythms of barnacles in relation to respiration and feeding. J. mar. biol. Ass. U.K. 45, 161–185 (1965).Google Scholar
  53. Step, E.: Shell life: an introduction to the British Mollusca, 443 pp. London and New York: Frederick Warne & Co Ltd. 1945.Google Scholar
  54. Tammes, P. M. L. and A. D. G. Dral: Observations on the straining of suspensions by mussels. Archs néerl. Zool. 11, 87–112 (1955).Google Scholar
  55. Tebble, N.: British bivalve sea shells. A handbook for identification, 212 pp. London: Trustees of the British Museum (Natural History) 1966.Google Scholar
  56. Theede, H.: Experimentelle Untersuchungen über die Filtrierleistung der Miesmuschel Mytilus edulis L. Kieler Meeresforsch. 19 (1), 20–41 (1963).Google Scholar
  57. Viallanes, H.: Recherches sur la filtration de l'eau par les mollusques et application a l'ostriculture et oceanographic. C. r. hebd. Séanc. Acad. Sci., Paris 114 (2), 13–86 (1892).Google Scholar
  58. Wallengren, H.: Zur Biologie der Muscheln. 1. Die Wasserströmungen. Lunds Univ. Årsskr. (Afd. 2) 1, 1–64 (1905).Google Scholar
  59. Walne, P. R.: Experiments in the large-scale culture of the larvae of Ostrea edulis L. Fishery Invest., Lond. (Ser. 2) 25 (4), 53 (1966).Google Scholar
  60. Willemsen, J.: Quantities of water pumped by mussels (Mytilus edulis) and cockles (Cardium edule). Archs néerl. Zool. 10, 152–160 (1952).Google Scholar
  61. Winter, J. E.: Über den Einfluß der Nahrungskonzentration und anderer Faktoren auf Filtrierleistung und Nahrungsausnutzung der Muscheln Arctica islandica und Modiolus modiolus. Mar. Biol. 4, 87–135 (1969).Google Scholar
  62. Yonge, C. M.: Structure and physiology of the organs of feeding and digestion in Ostrea edulis. J. mar. biol. Ass. U.K. 14, 295–386 (1926).Google Scholar
  63. —: The sea shore, 311 pp. London: Collins 1949.Google Scholar
  64. —: Marine boring organisms. Research, Lond. 4 (4), 162–167 (1951).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • R. M. Ali
    • 1
  1. 1.Marine Science LaboratoriesAngleseyNorth Wales, UK

Personalised recommendations