Skip to main content
Log in

Beiträge zur Temperaturadaptation des Aales (Anguilla vulgaris)

III. Höhe und Verteilung der Aktivität von Succinodehydrogenase und Cytochromoxydase im Seitenmuskel juveniler und adulter Tiere

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Previous authors have demonstrated that changes in O2-consumption of predominant muscle tissue (in vitro) do not account for the variations in O2-consumption of a resting intact eel induced by differences in adaptation temperature (AT). The present paper is concerned with the metabolism of the eel's lateral muscle. Activity of cytochrome oxidase and succinate dehydrogenase, expressed in terms of O2-consumption, are higher in the red muscle portion than in the white one (the factors are 6 to 10 and 2 to 3, respectively). In epaxial muscle strips from some 10 cm behind the anus, red muscle tissue comprises between 44% and more than 60% of the total lateral muscle cytochrome oxidase activity, even though, in this region, the relative weight of the red portion makes up only 11 to 14.5% of the total muscle. The red muscle portion is still smaller in the region anterior to the anus, and its total cytochrome oxidase activity (enzyme activity x relative weight) much lower. Cytochrome oxidase activity remains rather unchanged in the white portion of the muscle. Since the metabolism of white muscles is primarily glycolytic, it is remarkable that — with respect to the terminal oxidative metabolism — tissue temperature adaptation in the eel is more pronounced in red muscles than in white ones. In juvenile and adult eels, acclimated to seasonal temperature, the total cytochrome oxidase activity of the white muscle undergoes little change. However, in cold-acclimated adults with extensive pigmentation, aerobic metabolism of red muscles is favoured; this is indicated both by extremely high cytochrome oxidase activity and increased relative muscle weight. Increased aerobic metabolism of red muscle tissue is, therefore, assumed to be important, especially during the winter spawning migration.

Zusammenfassung

  1. 1.

    Der oxydative Stoffwechsel der Skelettmuskulatur des adulten und juvenilen Aales Anguilla vulgaris L. wird an Hand verschiedener Parameter beschrieben. Bestimmt wurde die Aktivität der Succinodehydrogenase (SDH) und der Cytochromoxydase sowie in einigen Fällen auch die der Glycerinaldehyd-3-Phosphat-Dehydrogenase (GAPDH) und der Lactat-Dehydrogenase (LDH) in der dorsalen Skelettmus-kulatur verschiedener Körperabschnitte von langfristig an verschiedene Temperaturen angepaßten juvenilen (15°, 24°C) und adulten (8/11,5°, 12/13°, 15°, 24/25°C) Aalen. Der Skelettmuskel wurde ungeteilt und in seine Gewichtsanteile an roter und weißer Muskulatur zerlegt bearbeitet.

  2. 2.

    Die ungeteilte Skelettmuskulatur des Aales zeigt eine Temperaturadaptation (Kompensation): SDH-und Cytochromoxydase-Aktivität sind nach Kälteanpassung gesteigert. Im roten Muskelanteil ist der Umfang der adaptiven Veränderungen bedeutender als im weißer Muskelanteil.

  3. 3.

    Der rote Seitenmuskel hat einen viel höheren oxydativen Stoffwechsel als der weiße; im mittleren Schwanzbereich ist ein großer (15°C-Gelbaal) bis über-chromoxydase-Ak Anteil (kaltadaptierter Silberaal) der Cytochromoxydase-Aktivität des ungeteilten Muskels im roten Muskelgewebe lokalisiert. Dieser Aktivitätsanteil des roten Muskelgewebes differiert in den verschiedenen Körperregionen stark, der der weißen Muskulatur jedoch nur geringfügig.

  4. 4.

    Ein Vergleich von Gelbaal (AT: 15°C) und Silberaal (AT: 8/11,5°C) zeigt vornehmlich den roten Muskel betreffende morphologische und enzymatische Veränderungen. Die starke Betonung der aeroben Funktionen des roten Muskels beim kaltadaptierten, gut ausgefärbten Silberaal wird als Anpassung an die für die Winterwanderung erforderliche Dauerleistung bei niedrigen Wassertemperaturen gedeutet. Aufgehellte, kaltadaptierte Silberaale lassen eine Anpassung dieses Ausmaßes vermissen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Zitierte Literatur

  • Auerbach, M.: Hat die Schilddrüse für die Temperaturadaptation der Fische eine Bedeutung? Z. Fisch. 6, 605–620 (1957).

    Google Scholar 

  • Barets, M. A. et S. le Tonze: Identification dans le muscle latérale de un Teléostéen (Tinca tinca L.) de deux systémes moteurs, “lent” et “rapide”. C. r. hebd. Séanc. Acad. Sci., Paris 242, 1230–1233 (1956).

    Google Scholar 

  • Berkholz, G.: Über die Temperaturadaptation des Nerflings (Idus idus L., Pisces) nach inkonstanter Vorbehandlung. Z. wiss. Zool. 174, 377–399 (1966).

    Google Scholar 

  • Bertalanffy, L., von and R. P. Estwick: Tissue respiration of musculature in relation to body size. Am. J. Physiol. 173, 58–60 (1953).

    Google Scholar 

  • Bertin, L.: Eels, a biological study, 192 pp. London: Cleaver-Hume 1956.

    Google Scholar 

  • Bilinski, E.: Utilization of lipids by fish. 1. Fatty acid oxidation by tissue slices from dark and white muscle of rainbow trout (Salmo gairdnerii). Can. J. Biochem. Physiol. 41, 107–112 (1963).

    Google Scholar 

  • Braekkan, O. R.: Function of the red muscle in fish. Nature, Lond. 178, 747–748 (1956).

    Google Scholar 

  • Buddenbrock, W. von: Vergleichende Physiologie. Bd. V: Physiologie der Erfolgsorgane, 390 pp. Basel: Birkhäuser 1961.

    Google Scholar 

  • Bücher, T., W. Luh und D. Pette: Einfache und zusammengesetzte Tests mit Pyridinnucleotiden. In: Handbuch der physiologischen und pathologischen Analyse. 10. Aufl. Bd. 6 A, pp 292–324. Hrsg. von F. Hoppe-Seyler und H. Thierfelder. Berlin: Springer-Verlag 1964.

    Google Scholar 

  • Callamand, O. et M. Fontaine: L'activité thyroidienne de l'Anguille au cours de sons développement. Archs Zool. exp. gén. 82, 129–140 (1942).

    Google Scholar 

  • Carlsen, H.: Der Carboxylase-Gehalt des Aales (Anguilla vulgaris L.). Z. vergl. Physiol. 35, 199–208 (1953).

    Google Scholar 

  • Chance, G.: The energy linked reaction of calcium with mitochondria. J. biol. Chem. 240, 2729–2748 (1965).

    Google Scholar 

  • Chester Jones, I. (Ed.): Hormones in fish, 181 pp. London: Academic Press 1960.

    Google Scholar 

  • Das, A. B.: Biochemical changes in tissues of goldfish acclimated to low and high temperatures. 2. Synthesis of protein and RNA of subcellular fractions and tissue composition. Comp. Biochem. Physiol. 21, 469–485 (1967).

    Google Scholar 

  • — and C. L. Prosser: Biochemical changes in tissues of goldfish acclimated to low and high temperatures. I. Comp. Biochem. Physiol. 21, 449–467 (1967).

    Google Scholar 

  • Dill, D. B., E. F. Adolph and C. G. Wilber (Eds.): Adaptation to the environment. In: Handbook of physiology, 4, pp 73–90. Washington, D.C.: Am. Physiol. Soc. 1964.

    Google Scholar 

  • Domonkos, J.: The metabolism of the tonic and tetanic muscles. 1. Glycolytic metabolism. Archs Biochem. 95, 138–143 (1961).

    Google Scholar 

  • — and L. Latzkovits: The metabolism of the tonic and tetanic muscles. 2. Oxidative metabolism. Archs Biochem. 95, 144–146 (1961a).

    Google Scholar 

  • ——: The metabolism of the tonic and tetanic muscle. 3. Pyruvat metabolism. Arch. Biochem. 95, 147–150 (1961b).

    Google Scholar 

  • Drabkin, D. L.: The distribution of the chromoproteins, hemoglobin, myoglobin, and cytochrom c in the tissues of different species, and the relationship of the total content of each chromoprotein to body mass. J. biol. Chem. 182, 317–349 (1950).

    Google Scholar 

  • Drummond, G. I. and E. C. Black: Comparative physiology: Fuel of muscle metabolism. A. Rev. Physiol. 22, 169–190 (1960).

    Google Scholar 

  • Evans, H. M.: A note on some seasonal changes in the pituitary gland of the eel (Anguilla vulgaris). Proc. zool. Soc. Lond. 107, 483–485 (1938).

    Google Scholar 

  • —: Changes of eel pituitaries prior to migration. Br. med. J. 41, 565–567 (1940).

    Google Scholar 

  • Evans, R. M., F. C. Purdie and V. P. Hickman Jr.: The effect of temperature and photoperiod on the respiratory metabolism of rainbow trout (Salmo gairdneri). Can. J. Zool. 40, 107–118 (1962).

    Google Scholar 

  • Fontaine, M.: Sur la teneur en flavine de diverse organes de l'Anguille. C. r. hebd. Séanc. Acad. Sci., Paris 204, 1367–1368 (1937).

    Google Scholar 

  • — et O. Callamand: Nouvelles recherches sur le détermisme physiologique de l'avalaison des poissons migrateurs amphibiotiques. Bull. Mus. Hist. nat., Paris 20, 317–320 (1948).

    Google Scholar 

  • —, F. de la Querrieve et A. Raffy: Action de l'hypophysectomie sur le métabolisme respiratoire de l'Anguille (Anguilla anguilla L.) C. r. Séanc. Soc. Biol. 151, 232–233 (1957).

    Google Scholar 

  • Freed, J.: Changes in activity of cytochrome oxidase during adaptation of goldfish to different temperatures. Comp. Biochem. Physiol. 14, 651–659 (1965).

    Google Scholar 

  • Freeman, J. A.: Oxygen consumption, brain metabolism, and respiratory movements of goldfish during temperature acclimation. Biol. Bull. mar. biol. Lab., Woods Hole 99, 416–424 (1950).

    Google Scholar 

  • Fujita, A., T. Hata, I. Numata und M. Ajisaka: Über die Bestimmung von Cytochrom c in Geweben. Biochem. Z. 301, 376–384 (1939).

    Google Scholar 

  • Fukuda, H.: Studies on the succinic dehydrogenase of fish. 5. Difference of succinic dehydrogenase activity between various fishes and fish organs. Bull. Jap. Soc. scient. Fish. 24, 24–28 (1958).

    Google Scholar 

  • Gatt, S. and E. Racker: Regulatory mechanisms in carbohydrate metabolism. 1. Crabee effect in reconstructed systems. J. biol. Chem. 234, 1015–1023 (1959).

    Google Scholar 

  • George, J. C. and K. S. Sciara: A histochemical study of dehydrogenase activity in the pectoralis mayor muscle of the pigeon and certain other vertebrate skeletal muscle. A. Jl microsc. Sci. 99, 469–473 (1958).

    Google Scholar 

  • Gorbman, A. (Ed.): Comparative endocrinology, 746 pp. New York: Wiley & Sons 1959.

    Google Scholar 

  • Gordon, M. S.: Oxygen consumption of red and white muscles from tuna fishes. Science, N. Y. 159, 87–89 (1968).

    Google Scholar 

  • Gray, J.: Studies in animal locomotion. 1. The movement of fish with special reference to the eel. J. exp. Biol. 10, 88–104 (1933).

    Google Scholar 

  • Hackenbrock, C. R. and P. W. Brandt: Reversible ultrastructural changes in mitochondria with changes in functional state. J. biophys. biochem. Cytol. 27, 40 A (1965).

  • Hanke, W., K. Bergerhoff and D. K. O. Chan: Histological observations on pituitary ACTH-cells, adrenal cortex, and the corpuscules of Stannius of the european eel (Anguilla anguilla L.). Gen. comp. Endocr. 9, 64–75 (1967).

    Google Scholar 

  • Hannon, J. P. and E. Viereck (Eds.): Comparative physiology of temperature regulation, 455 pp. Alaska: Arctic Aeromedical Lab., Fort Wainwright, 1962.

    Google Scholar 

  • Hochachka, P. W. and F. R. Hayes: The effect of temperature acclimation on pathways of glucose metabolism in the trout. Can. J. Zool. 40, 261–270 (1962).

    Google Scholar 

  • Ichihara, A., H. Tanioka and Y. Takeda: Respiratory control of disposed rat liver cells. Biochim. biophys. Acta 97, 1–8 (1965).

    Google Scholar 

  • Idler, D. R. and I. Bitners: Biochemical studies on sockeye salmon during spawning migration. 5. Cholesterol, fat, protein, and water in the body of the standard fish. Can. J. Biochem. Physiol. 36, 793 ff. (1958).

    Google Scholar 

  • Jankowsky, H. D.: Über die hormonale Beeinflussung der Temperaturadaptation beim Grasfrosch (Rana temporaria L.). Z. vergl. Physiol. 43, 392–410 (1960).

    Google Scholar 

  • —: The effect of adaptation temperature on the metabolic level of the eel (Anguilla vulgaris L.). Helgoländer wiss. Meeresunters. 13, 402–407 (1966).

    Google Scholar 

  • —: Versuche zur Adaptation der Fische im normalen Temperaturbereich. Helgoländer wiss. Meeresunters. 18, 317–362 (1968).

    Google Scholar 

  • Jankowsky, H. D. On the structure and the metabolic rate of the skeletal muscle of the eel (Anguilla vulgaris L.). (1969) (in press).

  • — and H. Korn: Der Einfluß der Temperature auf den Mitochondriengehalt des Fischmuskels. Naturwissenschaften 52, 642–643 (1965).

    Google Scholar 

  • Jansky, L.: Body organ cytochrome oxidase activity in cold- and warm-acclimated rats. Can. J. Biochem. Physiol. 41, 1847–1854 (1963).

    Google Scholar 

  • Jens, G.: Über den lunaren Rhythmus der Blankaalwanderung. Arch. Fisch Wiss. 4, 94–110 (1952/53).

    Google Scholar 

  • Kasbohm, P.: Der Einfluß des Lichts auf die Temperaturadaptation bei Rana temporaria L. Helgoländer wiss. Meeresunters. 16, 157–178 (1967).

    Google Scholar 

  • Keune, J. A. und H. Struck: Der Aal; eine kleine Monographie über einen weltberühmten Wanderfisch. 100 pp. Hamburg: Keune 1965.

    Google Scholar 

  • Kinne, O.: Non-genetic adaptation to temperature and salinity. Helgoländer wiss. Meeresunters. 9, 433–458 (1964).

    Google Scholar 

  • Klingenberg, M.: Muskelmitochondrien. Ergebn. Physiol. 55, 131–189 (1963).

    Google Scholar 

  • Knowles, F. and L. Vollrath: A functional relationship between neurosecretory fibres and pituicytes in the eel. Nature, Lond. 208, 1343 (1965).

    Google Scholar 

  • Koops, H.: Fütterung von Aalen in Teichen. Arch. Fisch Wiss. 16, 33–38 (1965)

    Google Scholar 

  • Krüger, G.: Über die Temperaturadaptation des Bitterlings (Rhodeus amarus Bloch). Z. wiss. Zool. 167, 87–104 (1962).

    Google Scholar 

  • Lawrie, R. A.: The activity of the cytochrome system in muscle and its relation to myoglobin. Biochem. Z. 55, 298–305 (1953a).

    Google Scholar 

  • — The relation of energy-rich phosphate in muscle to myoglobin and to cytochrome oxidase activity. Biochem. Z. 55, 305–309 (1953b).

    Google Scholar 

  • Lazarow, A. and S. J. Cooperstein: Studies on the isolated islet of fish. 1. The cytochrome oxidase and SDH contents of normal toadfish (Opsanus tau). Biol. Bull. mar. biol. Lab., Woods Hole 100, 191–198 (1951).

    Google Scholar 

  • Lowe, R. H.: The influence of light and other factors on the seaward migration of the silver eel (Anguilla anguilla L.). J. Anim. Ecol. 21, 275–309 (1952).

    Google Scholar 

  • Mann, H.: Untersuchung über die Hälterung von Aalen. Arch. Fisch Wiss. 11, 145–147 (1960).

    Google Scholar 

  • —: Beobachtungen über den Aalaufstieg in der Aalleiter an der Staustufe Geesthacht im Jahre 1961. Fischwirt 13, 182–186 (1963).

    Google Scholar 

  • Ogata, T.: A histochemical study of the red and white muscle fibres. 1. Activity of succinoxidase system in muscle fibres. Acta Med. Okoyama 12, 216–227 (1958a).

    Google Scholar 

  • —: A histochemical study of the red and white muscle fibres. 2. Activity of cytochrome oxidase in muscle fibres. Acta Med. Okoyama 12, 228–232 (1958b).

    Google Scholar 

  • Opitz, E. und D. Lübbers: Allgemeine Physiologie der Zell- und Gewebsatmung. In: Handbuch der allgemeinen Pathologie, Bd. 4, T. 2. Stoffwechsel. pp 395–496. Hrsg. von H. W. Altmann (u. a.). Berlin: Springer 1957.

    Google Scholar 

  • Pätau, K.: Zur statistischen Beurteilung von Meßreihen (eine neue t-Tafel). Biol. Zbl. 63, 152–168 (1943).

    Google Scholar 

  • Parker, G. H.: Melanophore activators in the common american eel (Anguilla rostrata Le Sueur). J. exp. Zool. 98, 211–235 (1945).

    Google Scholar 

  • Petersen, L. G. J.: The influence of light on the migrations of the eel. Rep. Dan. biol. Stn 14, 2–9 (1906).

    Google Scholar 

  • Pette, D.: Plan und Muster im zellulären Stoffwechsel. Naturwissenschaften 52, 597–616 (1965).

    Google Scholar 

  • —: Energieliefernder Stoffwechsel des Muskels unter zellphysiologischem Aspekt. In: Symposion über progressive Muskeldystrophie. pp 493–506. Hrsg. von E. Kuhn. Heidelberg: Springer 1966.

    Google Scholar 

  • Preoht, H.: Der Einfluß der Temperatur auf die Atmung und auf einige Fermente beim Aal (Anguilla vulgaris L.). Biol. Zbl. 70, 71–85 (1951).

    Google Scholar 

  • —: Beitrage zur Temperaturadaptation des Aales (Anguilla vulgaris L.). Z. vergl. Physiol. 44, 451–462 (1961).

    Google Scholar 

  • —: Anpassung wechselwarmer Tiere im normalen Temperaturbereich und ihre Ursachen. Naturw. Rdsch., Stuttg. 16, 438–442 (1964).

    Google Scholar 

  • —: Der Einfluß “normaler” Temperaturen auf Lebensprozesse bei wechselwarmen Tieren unter Ausschluß der Wachstums- und Entwicklungsprozesse. Helgoländer wiss. Meeresunters. 18, 487–548 (1968).

    Google Scholar 

  • —, J. Christophersen und H. Hensel: Temperatur und Leben, 514 pp. Heidelberg: Springer 1955.

    Google Scholar 

  • Prosser, C. L. (Ed.): Physiological adaptation, 185 pp. Washington, D.C.: Am. Physiol. Soc. 1958.

    Google Scholar 

  • —: Molecular mechanisms of temperature adaptation, 390 pp. Washington, D.C.: A. A. A. S. Publs Am. Ass. Advmt Sci. 84, 1967.

    Google Scholar 

  • — and H. D. Jankowsky: Nervous control of metabolism during temperature acclimation of fish. Naturwissenschaften 52, 168–169 (1965).

    Google Scholar 

  • Rayner, M. D. and M. J. Keenan: Role of red and white muscle in the swimming of the skipjack tuna. Nature, Lond. 214, 392–393 (1967).

    Google Scholar 

  • Richard, A.: La locomotion et son inhibition chez l'Anguille. I. J. Physiol., Paris 47, 807–819 (1955).

    Google Scholar 

  • Roberts, J. L.: The influence of photoperiod upon thermal acclimation by the crucian carp, Carassius carassius (L.). Zool. Anz. (Suppl. Bd.) 24, 73–78 (1961).

    Google Scholar 

  • —: Metabolic responses of fresh-water sunfish to seasonal photoperiods and temperatures. Helgoländer wiss. Meeresunters. 9, 459–473 (1964).

    Google Scholar 

  • —: Systemic versus cellular acclimation to temperature by poikilotherms. Helgoländer wiss. Meeresunters. 14, 451–465 (1966).

    Google Scholar 

  • Robertson, O. H.: The occurrence of increased activity of the thyroid gland in rainbow trout at the time of transformation from parr to silvery smolt. Physiol. Zool. 21, 282–295 (1948).

    Google Scholar 

  • Schollmeyer, P. und M. Klingenberg: Über den Cytochrom-Gehalt tierischer Gewebe. Biochem. Z. 335, 426–439 (1962).

    Google Scholar 

  • Schultze, D.: Beiträge zur Temperaturadaptation des Aales (Anguilla vulgaris L.). 2. Z. wiss. Zool. 172, 104–133 (1965).

    Google Scholar 

  • Slater, E. C.: Measurement of the cytochromoxidase activity of enzyme preparations. Biochem. Z. 44, 305–318 (1949)

    Google Scholar 

  • Stangenberg, G.: Der Temperatureinfluß auf Lebensprozesse und den Cytochrom-c-Gehalt beim Wasserfrosch. Pflügers Arch. ges. Physiol. 260, 320–332 (1955).

    Google Scholar 

  • Suhrmann, R.: Weitere Versuche über die Temperaturadaptation der Karauschen (Carassius vulgaris Nils.). Biol. Zbl. 74, 432–448 (1955).

    Google Scholar 

  • Sumner, F. B. and P. Doudoroff: Some quantitative relations between visual stimuli and the production or destruction of melanin in fishes. Proc. natn. Acad. Sci. U. S. A. 23, 211–219 (1937).

    Google Scholar 

  • ——: Some effects of light intensity and shade of background upon the melanin content of Gambusia. Proc. Nat. Acad. Sci. U.S.A. 24, 459–463 (1938).

    Google Scholar 

  • Teichmann, H.: Die Chemorezeption der Fische. Ergebn. Biol. 25, 177–205 (1962).

    Google Scholar 

  • Tesch, F. W.: Aktivität und Verhalten wandernder Lampetra fluviatilis, Lota lota und Anguilla anguilla im Tidegebiet der Elbe. Helgoländer wiss. Meeresunters. 16, 92–121 (1967a).

    Google Scholar 

  • —: Homing of eels (Anguilla anguilla) in the southern North Sea. Mar. Biol. 1, 2–9 (1967b).

    Google Scholar 

  • Troshin, A. S. (Ed.): The cell and environmental temperature. Engl. ed. by C. L. Prosser. 462 pp. Oxford: Pergamon Press 1967.

    Google Scholar 

  • Umbreit, W. W., R. H. Burris and J. F. Stauffer (Eds.): Manometric techniques and tissue metabolism. 300 pp. Minneapolis, Minn.: Burgess Press 1964.

    Google Scholar 

  • Umemura, K.: Respiratory enzymes in the red muscle (chiai) of a fish. 1. Dehydrogenase activities measured by the Thunberg techniques. Chem. Abstr. 45 (2), 5327 i (1951a).

  • Umemura, K.: Respiratory enzymes in the red muscle (chiai) of a fish. 2. The activity of several oxidases as measured by the Warburg techniques. Chem. Abstr. 45 (2), 6232 e (1951b).

  • Wittenberger, C.: On the function of the lateral red muscle of teleost fishes. Revue RBV. Roum. Biol. (Zool.) 12, 139–144 (1967).

    Google Scholar 

  • — and I. V. Diaciuc: Effort metabolism of lateral muscles in carp. J. Fish. Res. Bd Can. 22, 1397–1406 (1965).

    Google Scholar 

  • — and E. Vitca: Variation of the glycogen content in the muscles of the carp during a work performed by isolated muscles and during starvation. Studia Univ. Babes-Bolyai (Ser. Biologica) 2, 117–123 (1966).

    Google Scholar 

  • Woodhead, A. D.: Variations in the activity of thyroid gland of cod, Gadus callarias L. in relation to its migration in the Barents Sea. 1. Seasonal changes. J. mar. biol. Ass. U.K. 38, 407–415 (1959a).

    Google Scholar 

  • —: Variations in the activity of thyroid gland of cod, Gadus callarias L. in relation to its migration in the Barents Sea. 2. The “dummy of run” of the immature fish. J. mar. biol. Ass. U.K. 38, 417–422 (1959b).

    Google Scholar 

  • Zebe, E.: Vergleichende Physiologie des Energiestoffwechsels von Muskeln. Ergebn. Biol. 24, 247–286 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malessa, P. Beiträge zur Temperaturadaptation des Aales (Anguilla vulgaris). Marine Biology 3, 143–158 (1969). https://doi.org/10.1007/BF00353435

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353435

Navigation