Skip to main content
Log in

Die wirkung der sauerstoffspannung auf die druckresistenz einiger mariner wirbelloser

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Variations in oxygen tension exert a considerable influence on the resistance of invertebrates to high hydrostatic pressure. Pressure resistance of whole animals (Idotea baltica, Cyprina islandica) and of isolated tissues (gill tissues of Cyprina islandica and Mytilus edulis) is higher in a medium not fully air saturated; it decreases with increasing oxygen tension to about air saturation or higher. In some species, pressure resistance decreases when dissolved oxygen is almost absent. Oxygen tension influences pressure resistance not only during exposure to increased pressure; our experiments revealed that pressure resistance increases in isolated tissues kept under oxygen deficiency prior to the experiment. Lactic acid, a result of anaerobic glycolysis, increases cellular pressure resistance only if its presence is combined with decreased pH values. Metabolic inhibition with cyanide does not increase pressure resistance. It is suggested that the primary reasons for lowered pressure resistance at saturation or higher oxygen levels are oxydation and inhibition of sensitive SH-enzymes under pressure. Decrease of pressure resistance at extreme degrees of oxygen deficiency may be due to insufficient rates of ATP synthesis. According to Marsland (1957), ATP is required for maintenance of protoplasmic gel structures. Correlations between pressure resistance and oxygen tension are of special importance in deep-sea animals, which often have to face reduced oxygen contents in their ambient medium.

Zusammenfassung

  1. 1.

    Im Meerwasser ist die Druckresistenz bei marinen Evertebraten (Idotea baltica, Cyprina islandica) und isoliertem Gewebe (Kiemenstücke von Cyprina islandica und Mytilus edulis) unter herabgesetzter Sauerstoffspannung des Mediums erhöht. Bei zunehmenden Sauerstoffgehalten im Bereich der Luftsättigung und darüber hinaus nimmt die Druckresistenz ab. Auch bei nahezu völligem O2-Mangel wird die Druckresistenz vermindert.

  2. 2.

    Die Voranpassung an O2-armes Medium wirkt sich ebenfalls positiv auf die zelluläre Druckresistenz aus.

  3. 3.

    Milchsäure, die während anaerober Glykolyse angereichert werden kann, wirkt sich nur dann erhöhend auf die zelluläre Druckresistenz aus, wenn ihr Vorkommen mit einer gleichzeitigen Herabsetzung des pH-Wertes verbunden ist.

  4. 4.

    Durch Atmungshemmung mit Cyanid in geringer Dosis wird die Druckresistenz nicht meßbar beeinflußt; bei höheren Dosen wird sie verringert.

  5. 5.

    Es wird gefolgert, daß die höhere Druckresistenz bei herabgesetzter Sauerstoffspannung wahrscheinlich auf verminderte Oxydation empfindlicher Gruppen (z. B. SH-Gruppen) einzelner Enzyme zurückzuführen ist.

  6. 6.

    Beziehungen zwischen Druckresistenz und Sauerstoffspannung sind besonders bei Tiefseebewohnern von Bedeutung, da diese in ihrem Lebensarum oft bei verminderten O2-Partialdrücken vorkommen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Zitierte Literatur

  • Aust. Oceanogr. Cruise Rep. CSIRO 5, 1962.

  • Barron, E. S. G.: Oxidation of some oxidation-reduction systems by oxygen at high pressure. Archs Biochem. Biophys. 59, 502–510 (1955).

    Google Scholar 

  • Davies, H. C. and R. E. Davies: Biochemical aspects of oxygen poisoning. In: Handbook of physiology, respiration, pp 1047–1058. Ed. by W. O. Fenn and H. Rahn. Washington, D. C.: Am. Physiol. Soc. Sect. 3, Vol 2 1965.

  • Dickens, F.: The toxic effect of oxygen on nervous tissue. In: Neurochemistry, 2. Aufl., pp 851–869. Ed. by K. A. C. Elliott, I. H. Page and J. H. Quastel. Springfield Ill.: Charles C. Thomas 1962.

    Google Scholar 

  • Dietrich, G. und K. Kalle: Allgemeine Meereskunde, 492 pp. Berlin-Nikolassee: Gebr. Borntraeger 1957.

    Google Scholar 

  • Ebbecke, U.: Lebensvorgänge unter Einwirkung hoher Drucke. Ergebn. Physiol. 45, 34–183 (1944).

    Google Scholar 

  • Final Cruise Report Int. Ind. Oc. Exped. Woods Hole oceanogr. Inst. 1, 1965.

  • Green, E. J. and D. E. Carritt: New tables for oxygen saturation of sea water. J. mar. Res. 25, 140–147 (1967).

    Google Scholar 

  • Guthe, K. F., H. C. Lawler, M. P. Carpenter and D. E. S. Brown: Activity of myosin and actomyosin ATPase in relation to pressure, temperature and pH. Fedn Proc. Fedn Am. Socs exp. Biol. 13, pp 63 (1954).

    Google Scholar 

  • Haugaard, N.: The toxic action of oxygen on metabolism and the role of trace metals. In: Oxygen in the animal organism, pp 495–507. Ed. by F. Dickens and E. Neil. Oxford: Pergamon Press 1964.

    Google Scholar 

  • —: Cellular mechanism of oxygen toxicity. Physiol. Rev. 48, 311–373 (1968).

    Google Scholar 

  • Heden, C. G.: Effects of hydrostatic pressure on microbial systems. Bact. Rev. 28, 14–29 (1964).

    Google Scholar 

  • Hill, E. P. and R. Y. Morita: Dehydrogenase activity under hydrostatic pressure by isolated mitochondria obtained from Allomyces macrogynus. Limnol. Oceanogr. 9, 243–248 (1964).

    Google Scholar 

  • Johnson, F. H., H. Eyring and M. I. Polissar: The kinetic basis of molecular biology, 874 pp. New York: Wiley & Sons 1954.

    Google Scholar 

  • Knight-Jones, E. M. and E. Morgan: Responses of marine animals to changes in hydrostatic pressure. Oceanogr. mar. Biol. A. Rev. 4, 267–299 (1966).

    Google Scholar 

  • Marsland, D. A.: Protoplasmic contractility. Pressure experiments on the motility of living cells. Scient. Mon., N.Y. 67, 193–200 (1948).

    Google Scholar 

  • —: Temperature-pressure studies on the role of sol-gel reactions in cell division. In: The influence of temperature on biological systems, pp 111–126. Ed. by F. H. Johnson. Washington, D. C.: American Physiological Society 1957.

    Google Scholar 

  • — and D. E. S. Brown: Viscosity of Amoeba at high hydrostatic pressure. J. cell. comp. Physiol. 8, 159–165 (1936).

    Google Scholar 

  • Metcalf, W. G. and M. C. Stalcup: Current meter and hydrographic station data from Crawford cruise No. 165, in the tropical Atlantic Ocean, February–April 1968. Unpubl. Ms. Ser. Woods Hole Ref. No. 69-72, 1969.

  • Morita, R. Y.: Effect of hydrostatic pressure on succinic, formic and malic dehydrogenase in Escherichia coli. J. Bact. 74, 251–255 (1957).

    Google Scholar 

  • —: Effects of hydrostatic pressure on marine microorganisms. Oceanogr. mar. Biol. A. Rev. 5, 187–203 (1967).

    Google Scholar 

  • — and R. D. Haight: Malic dehydrogenase activity at 101 C under hydrostatic pressure. J. Bact. 83, 1341–1346 (1962).

    Google Scholar 

  • — and P. F. Mathemeier: Temperature-hydrostatic pressure studies on partially purified inorganic pyrophosphatase activity. J. Bact 88, 1667–1671 (1964).

    Google Scholar 

  • — and C. E. Zobell: Effect of hydrostatic pressure on the succinic dehydrogenase system in Escherichia coli. J. Bact. 71, 668–672 (1956).

    Google Scholar 

  • Naroska, V.: Vergleichende Untersuchungen über den Einfluß des hydrostatischen Druckes auf Überlebensfähigkeit und Stoffwechselintensität mariner Evertebraten und Teleosteer. Kieler Meeresforsch. 24, 95–123 (1968).

    Google Scholar 

  • Oceanogrl Rep. ‘Dana’ Exped. 1920–22. 1, (1929).

  • Oceanogrl Rep. ‘Dana’ Exped. 1928–30. 12, (1937).

  • Ponat, A.: Untersuchungen zur zellulären Druckresistanz verschiedener Evertebraten der Nord- und Ostsee. Kieler Meeresforsch. 23, 21–47 (1967).

    Google Scholar 

  • — und H. Theede: Die pH-Abhängigkeit der zellulären Druckresistenz bei Mytilus edulis. Helgoländer wiss. Meeresunters. 16, 231–237 (1967).

    Google Scholar 

  • Rutberg, L.: On the effects of high hydrostatic pressure on bacteria and bacteriophage. 1. Action on the reproducibility of bacteria and their ability to support growth of bacteriophage T2. Acta path. microbiol. scand. 61, 81–90 (1964a).

    Google Scholar 

  • —: On the effects of high hydrostatic pressure on bacteria and bacteriophage. 2. Inactivation of bacteriophages. Acta path. microbiol. scand. 61, 91–97 (1964b).

    Google Scholar 

  • —: On the effects of high hydrostatic pressure on bacteria and bacteriophage. 3. Induction with high hydrostatic pressure of Escherichia coli K lysogenic for bacteriophage lambda. Acta path. microbiol. scand. 61, 98–105 (1964c).

    Google Scholar 

  • Schlieper, C.: Biologische Wirkungen hoher Wasserdrucke. Experimentelle Tiefseephysiologie. Veröff. Inst. Meeresforsch. Bremerh. 8, 31–48 (1963).

    Google Scholar 

  • —: High pressure effects on marine invertebrates and fishes. Mar. Biol. 2, 5–12 (1968).

    Google Scholar 

  • Schmidt, J.: Introduction to the oceanographical reports including list of stations and hydrographical observations. Oceanogrl Rep. ‘Dana’ Exped. 1, 1–87 (1929).

    Google Scholar 

  • Stadie, W. and N. Haugaard: Oxygen poisoning. 5. The effect of high oxygen pressure upon enzymes: succinic dehydrogenase and cytochrome oxidase. J. biol. Chem. 161, 153–174 (1945a).

    Google Scholar 

  • —: Oxygen poisoning. 7. The effect of high oxygen pressure upon enzymes: uricase, xanthine oxidase, and d-amino acid oxidase. J. biol. Chem. 161, 181–188 (1945b).

    Google Scholar 

  • — B. C. Riggs and N. Haugaard: Oxygen poisoning. 3. The effect of high oxygen pressure upon the metabolism of brain. J. biol. Chem. 161, 175–180 (1945a).

    Google Scholar 

  • —: Oxygen poisoning. 8. The effect of high oxygen pressure upon enzymes: the system synthesizing acetyicholine. J. biol. Chem. 161, 189–196 (1945b).

    Google Scholar 

  • Theede, H., A. Ponat, K. Hiroki and C. Schlieper: Studies on the resistance of marine bottom invertebrates to oxygendeficiency and hydrogen sulphide. Mar. Biol. 2, 325–337 (1969).

    Google Scholar 

  • Zimmerman, A. M.: Incorporation of 3H-thymidine in the eggs of Arbacia punctulata. Expl Cell. Res. 31, 39–51 (1963).

    Google Scholar 

  • — and L. Silberman: Further studies on incorporation of 3H-thymidine in Arbacia eggs under hydrostatic pressure. Biol. Bull. mar. biol. Lab., Woods Hole 127, 335 (1964)

    Google Scholar 

  • Zobell, C. F. and A. B. Cobet: Growth, reproduction, and death rates of E. coli at increased hydrostatic pressure. J. Bact. 84, 1228–1236 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theede, H., Ponat, A. Die wirkung der sauerstoffspannung auf die druckresistenz einiger mariner wirbelloser. Marine Biology 6, 66–73 (1970). https://doi.org/10.1007/BF00352609

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352609

Navigation