Skip to main content
Log in

The relevance of the surface structure and surface chemistry of carbon fibres in their adhesion to high temperature thermoplastics

Part II Surface chemistry

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper is concerned with the surface chemistry of several different carbon fibres subjected to various surface treatments. The microstructure and nanostructures of these fibres were investigated in the Part I of this series of papers. For analysis of the surface chemistry of the fibres, X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) were employed; the first method was used for identification and semi-quantitative determination of functional surface groups, while the second method was used for a quantitative determination of these groups. The possible interactions of the various carbon-fibre surfaces due to different surface treatments (and therefore to different functional groups) were analysed by wetting studies using the Wilhelmy technique and aqueous solutions of different pH values as test liquids. By variation of the pH value of the test liquids, the distinct acid-base complexes that formed with the functional groups were identified. The same test liquids were used for characterization of the surface chemistry of the high-temperature thermoplastics (polycarbonate and polyethersulphone) used as matrix materials in the fabrication of the composites in this study. Acid-base interactions at the carbon-fibre surfaces are mainly determined by carboxylic groups of different acidity. The concentration of these groups as determined by desorption of carbon dioxide up to 500 °C is shown to be directly proportional to the measured work of adhesion of each group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Krekel, K. J. Hüttinger, W. P. Hoffman and D. S. Silver, J. Mater. Sci, 28 (1993).

  2. H. P. Boehm and G. Bewer, Extended Abstracts of the Fourth London International Carbon and Graphite Conference, London, September 1974 (Society of Chemical Industry, 1974) p. 344.

  3. H. P. Boehm, E. Diehl, W. Heck and R. Sappock, Angew. Chem. 76 (1964) 742.

    Article  CAS  Google Scholar 

  4. H. P. Boehm, Kolloid Z. Z. Polym. 227 (1968) 17.

    Article  CAS  Google Scholar 

  5. Idem., Adv. Catalysis 16 (1966) 179.

    CAS  Google Scholar 

  6. H. P. Boehm and M. Voll, Carbon 8 (1970) 227–240, idem., ibid. 8 (1970) 741–752, idem., ibid. 9 (1971) 473–480, and idem., ibid. 9 (1971) 481–488.

    Article  CAS  Google Scholar 

  7. J. B. Donnet and R. C. Bansal, “Carbon fibres” (Marcel Dekker, New York, 1984).

    Google Scholar 

  8. P. Ehrburger, in “Carbon fibres, filaments and composites”, edited by J. L. Figueiredo, C. A. Bernardo, R. T. K. Baker and K. J. Huttinger (Kluwer Academic, Dordrecht, 1990) p. 147.

    Chapter  Google Scholar 

  9. D. W. Mckee and V. J. Mimeault, Chem. Phys. Carbon 8 (1973) 151.

    CAS  Google Scholar 

  10. B. R. Puri, Chem. Phys. Carbon 6 (1971) 191.

    Google Scholar 

  11. V. A. Garten and D. E. Weiss, Rev. Pure Appl. Chem. 7 (1957) 69.

    CAS  Google Scholar 

  12. Idem., Aust. J. Chem. 10 (1959) 309.

    Article  Google Scholar 

  13. K. Konishita, “Electro-chemical and physico-chemical properties of carbon” (Wiley, New York, 1988).

    Google Scholar 

  14. H. P. Boehm, Angew. Chemie 78 (1966) 717.

    Google Scholar 

  15. E. Papirer, J. Dentzer, S. Li and J. B. Donnet, Carbon 29 (1991) 69–72.

    Article  CAS  Google Scholar 

  16. S. S. Barton and B. H. Harrison, Carbon 13 (1975) 283–288.

    Article  CAS  Google Scholar 

  17. B. R. Puri and R. C. Bansal, ibid. 1 (1964) 451, idem., ibid. 1 (1964) 457.

    Article  CAS  Google Scholar 

  18. P. Denison, F. R. Jones and J. F. Watts, J. Phys. D 20 (1987) 306–310.

    Article  CAS  Google Scholar 

  19. Y. Nakayama, F. Soeda and A. Ishitani, Carbon 28 (1990) 21–26.

    Article  CAS  Google Scholar 

  20. A. Proctor and P. M. A. Sherwood, J. Electron Spectrosc. Related Phenom. 27 (1982) 39–56.

    Article  CAS  Google Scholar 

  21. Idem., Carbon 21 (1983) 53–59.

    Article  CAS  Google Scholar 

  22. Idem. Sur. Interface Anal. 4 (1982) 212–219.

    Article  CAS  Google Scholar 

  23. C. Kozlowski and P. M. A. Sherwood, J. Chem. Soc., Faraday Trans, I 80 (1984) 2099–2107., idem., ibid. 81 (1985) 2745–2756.

    Article  CAS  Google Scholar 

  24. Idem. Carbon 25 (1987) 751–760.

    Article  CAS  Google Scholar 

  25. F. Hopfgarten, Extended Abstracts of the thirteenth Biennial Conference on Carbon, Irvine, CA., 1977 (American Carbon Society, 1977) 288–289.

  26. A. G. Bayer, Product information, Makrolon, Technische Kunststoffe von Bayer, Leverkusen (1988).

    Google Scholar 

  27. Idem., Product information, Ultrason, BASF Kunststoffe, kLudwigshafen (1989).

    Google Scholar 

  28. L. A. Wilhelmy, Ann. Physik 119 (1863) 177.

    Article  Google Scholar 

  29. Â. Miller, L. S. Penn and S. Hedvat, Colloids Surf. 6 (1983) 49.

    Article  CAS  Google Scholar 

  30. K. J. Hüttinger, in “Carbon fibres, filaments and composites”, edited by J. L. Figueiredo et al. (Kluwer Academic, Dordrecht, 1990) 245.

    Chapter  Google Scholar 

  31. W. A. Zisman, in “Contact angle, wettability, and adhesion”, edited by R. F. Could, American Chemical Society, Washington DC, ACS Advanced Chemistry Series, Vol. 43 (1964) p. 1.

    Google Scholar 

  32. H. Harttig, PhD thesis, University of Karlsruhe (1982).

  33. E. Fitzer, F. V. Sturm and R. Weiss, Extended Abstracts of the Sixteenth Biennial Conference on Carbon, University of California, San Diego, July, 1983 (American Carbon Society, 1983) 494–496.

  34. E. Ehrburger, J. J. Herque and J. -B. Donnet, Proceedings of the Fifth International Conference on Carbon and Graphite, Soc. Chem. Ind., London, September 1976 (1976) 201–203.

  35. K. J. Hüttinger, S. Höhmann-Wien and M. Seiferling, Carbon 29 (1991) 449–455.

    Article  Google Scholar 

  36. K. J. Hüttinger, S. Höhmann-Wien and G. Krekel, ibid. 29 (1991) 1281–1286.

    Article  Google Scholar 

  37. Idem. J. Adhesion Sci. Tech. 6 (1992) 317–331.

    Article  Google Scholar 

  38. F. M. Fowkes, in “Physico-chemical aspects of polymer surfaces”, Vol. 2 (Plenum Press, New York, 1983) p. 583.

    Google Scholar 

  39. Idem. J. Adhesion Sci. Tech. 1 (1987) 7.

    Article  CAS  Google Scholar 

  40. L. A. Girifalco and R. J. Good, J. Phys. Chem. 61 (1957) 904.

    Article  CAS  Google Scholar 

  41. G. Krekel, PhD thesis, University of Karlsruhe (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krekel, G., Hüttinger, K.J. & Hoffman, W.P. The relevance of the surface structure and surface chemistry of carbon fibres in their adhesion to high temperature thermoplastics. JOURNAL OF MATERIALS SCIENCE 29, 3461–3468 (1994). https://doi.org/10.1007/BF00352050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352050

Keywords

Navigation