Skip to main content
Log in

High pressure effects on marine invertebrates and fishes

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A survey of literature and of new information from the author's laboratory is presented concerning the comparative pressure physiology of marine invertebrates and fishes. Short term experiments on littoral marine animals have revealed that the taxonomic groups exhibiting the greatest resistance to high pressures are those with the greatest vertical distributions in the deep sea, namely, echinoderms, molluscs, amphipods, isopods and polychaetes. Shallow water species which possess high thermal and osmotic resistance also show an exceptionally high degree of pressure resistance. The relative differences in genetic pressure resistance of lower marine invertebrates are the same in whole, intact animals and in isolated, surviving tissue pieces. Adaptation of nonregulating euryoecous invertebrates to higher temperatures, higher osmotic concentrations and higher calcium contents of the tissues results in increased pressure resistance. Under pressure, the optimum cellular pH shifts downward to a lower pH range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Beebe, W.: 923 m unter dem Meeresspiegel, 255 pp. Leipzig: Brockhaus 1935.

    Google Scholar 

  • Brown, D. E. S.: The effect of rapid changes in hydrostatic pressure upon the contraction of skeletal muscle. J. cell. comp. Physiol. 4, 257–266 (1934a).

    Google Scholar 

  • —: The pressure coefficient of viscosity in the eggs of Arbacia punctulata. Physiol. 5, 335–346 (1934b).

    Google Scholar 

  • —, F. D. Guthe, H. C. Lawler and M. P. Carpenter: The pressure temperature and ion relations of Myosin ATP-ase. J. cell. comp. Physiol. 52, 59–77 (1958).

    Google Scholar 

  • Bruun, A. F.: Deep sea and abyssal depths. In: Treatise on Marine Ecology and Paleoecology. Mem. geol. Soc. Am. 67, 641–672 (1957).

  • Buch, K. und S. Gripenberg: Über den Einfluß des Wasserdruckes auf das pH und das Kohlensäuregleichgewicht in größeren Meerestiefen. J. Cons. perm. int. Explor. Mer 7, 233–245 (1932).

    Google Scholar 

  • Ebbecke, U.: Über die Wirkung hoher Drucke auf marine Lebewesen. Pflügers Arch. ges. Physiol. 236, 648–657 (1935).

    Google Scholar 

  • —: Lebensvorgänge unter der Einwirkung hoher Drucke. Ergebn. Physiol. 45, 34–183 (1944).

    Google Scholar 

  • Ekman, S.: Zoogeography of the Sea, 417 pp. London: Sidgwick & Jackson 1953.

    Google Scholar 

  • Fontaine, M.: Les fortes pressions et la consommation d'oxygène de quelques animaux marins. Influences de la taille de l'animal. C.r. Séane. Soc. Biol. (Paris) 99, 1789–1790 (1928).

    Google Scholar 

  • Fontaine, M.: Recherches expérimentales sur les réactions des êtres vivants aux fortes pressions. Annls Inst. océanogr., Monaco 8, 97 pp. (1930).

  • Hardy, A. C.: The world of plankton. Pt. 1. The open sea: its natural history, 335 pp. London: Collins 1956.

    Google Scholar 

  • Hill, E. P. and R. Y. Morita: Dehydrogenase activity under hydrostatic pressure by isolated mitochondria obtained from Allomyces macrogynus. Limnol. Oceanogr. 9, 243–248 (1964).

    Google Scholar 

  • Johnson, F. H., H. Eyring and M. J. Polissar: The kinetic basis of molecular biology. Chapter 9: Hydrostatic pressure and molecular volume changes, 874 pp. New York: Wiley & Sons 1954.

    Google Scholar 

  • Kitching, J. A. and D. C. Pease: The influence of hydrostatic pressure upon ciliary frequency. J. cell. comp. Physiol. 14, 135–142 (1939).

    Google Scholar 

  • Knight-Jones, E. W. and E. Morgan: Responses of marine animals to changes in hydrostatic pressure. Oceanogr. Mar. Biol. Ann. Rev. 4, 267–299 (1966).

    Google Scholar 

  • Marsland, D. A.: The effect of high hydrostatic pressure upon cell division in Arbacia eggs J. cell. comp. Physiol. 12, 57–70 (1938).

    Google Scholar 

  • —: Mechanism of pigment displacement in unicellular chromatophores. Biol. Bull. mar. biol. Lab., Woods Hole 87, 252–261 (1944).

    Google Scholar 

  • —: Temperature-pressure studies on the role of sol-gel reactions in cell division. In: The influence of temperature on biological systems, pp 111–126. Ed. by F. H. Johnson. Washington, D.C.: American Physiological Society 1957.

    Google Scholar 

  • —: Cells at high pressure. Scient. Am. 199, 36–43 (1958).

    Google Scholar 

  • — and D. E. S. Brown: Viscosity of Amoeba at high hydrostatic pressure. J. cell. comp. Physiol. 8, 159–165 (1936).

    Google Scholar 

  • Menzies, R. J. and J. B. Wilson: Preliminary field experiments on the relative importance of pressure and temperature on the penetration of marine invertebrates into the deep sea. Oikos 12, 302–309 (1961).

    Google Scholar 

  • Morita, R. Y.: Effects of hydrostatic pressure on marine microorganisms. Oceanogr. Mar. Biol. Rev. 5, 187–203 (1967a).

    Google Scholar 

  • —: Effect of hydrostatic pressure on succinic, formic, and malic dehydrogenases in Escherichia coli. J. Bact. 74, 251–255 (1967b).

    Google Scholar 

  • Naroska, V.: Vergleichende Untersuchungen über die Wirkung des hydrostatischen Druckes auf die Überlebensfähigkeit und die Stoffwechselintensität mariner Evertebraten und Teleostier. Nat. math. Diss. Kiel. Kieler Meeresforsch. 1968 (in press).

  • Ponat, A.: Untersuchungen zur zellulären Druckresistenz verschiedener Evertebraten der Nord- und Ostsee. Kieler Meeresforsch. 23, 21–47 (1967).

    Google Scholar 

  • — und H. Theede: Die pH-Abhängigkeit der zellulären Druckresistenz bei Mytilus edulis. Helgoländer wiss. Meeresunters. 16, 231–237 (1967).

    Google Scholar 

  • Regnard, P.: Recherches expérimentales sur les conditions physiques de la vie dans les eaux, 500 pp. Paris: Libraire de l'Academie de Medicine 1891.

    Google Scholar 

  • Schlieper, C.: Blologische Wirkungen hoher Wasserdrucke. Experimentelle Tiefsee-Physiologie. Veröff. Inst. Meeresforsch. Bremerh. (Sonderbd.), 1, 31–48 (1963).

    Google Scholar 

  • —: Genetic and nongenetic cellular resistance adaptation in marine invertebrates. Helgoländer wiss. Meeresunters. 14, 482–502 (1966).

    Google Scholar 

  • —, H. Flügel and H. Theede: Experimental investigations of the cellular resistance ranges of marine temperate and tropical bivalves. Physiol. Zoöl. 40, 345–360 (1967).

    Google Scholar 

  • Zenkevitch, L. A.: Erforschung der Tiefseefauna im nordwestlichen Teil des Stillen Ozeans. Publs. Un. int. Sci. biol. (Ser. B) 16, 72–85 (1954).

    Google Scholar 

  • — and K. A. Birstein: Studies of the deep water fauna and related problems. Deep Sea Res. 4, 54–64 (1956).

    Google Scholar 

  • Zobell, C. E.: The occurrence of bacteria in the deep sea and their significance for animal life. Publs. Un. int. Sci. biol. (Ser. B) 16, 20–26 (1954).

    Google Scholar 

  • —: Thermal changes accompanying the compression of aqueous solutions to deep-sea conditions. Limnol. Oceanogr. 4, 463–471 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Lecture presented on October 23, 1967 at Duke University, Marine Laboratory, Beaufort (USA); on November 6, 1967 at the Instituto di Biologia Marinha of the University of São Paulo (Brasil); and on November 8, 1967 at the Institute of Marine Science of the University of Miami (USA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlieper, C. High pressure effects on marine invertebrates and fishes. Marine Biol. 2, 5–12 (1968). https://doi.org/10.1007/BF00351631

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351631

Keywords

Navigation