Skip to main content
Log in

Electrical properties of high-temperature oxides, borides, carbides, and nitrides

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-temperature materials including oxides, borides, carbides, and nitrides encompass all types of conductors: metallic, semiconducting, and ionic. Their electrical conductivities are generally very sensitive to impurities regardless of the type of conductor. For large band-gap materials, which includes most of the oxides, the conductivities at low temperatures are frequently dominated by impurities or dopants, and intrinsic conduction only becomes significant above a temperature which depends largely on the level of dopant, the band gap and the defect structure of the base material. The borides, carbides, and nitrides of transition metals are metallic conductors with conductivities and temperature coefficients of resistivity comparable to that of their parent metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Fagan and V. W. Amarakoon, Am. Ceram. Soc. Bull. 72 (1993) 70.

    CAS  Google Scholar 

  2. Idem, ibid. 72 (1993) 69.

    CAS  Google Scholar 

  3. L. E. Toth, “Transition Metal Carbides and Nitrides” (Academic Press, New York, 1971).

    Google Scholar 

  4. H. J. Goldshmidt, “Interstitial Alloys” (Butterworths, London, 1967).

    Book  Google Scholar 

  5. H. H. Hausner and M. G. Bowman (eds), “Fundamentals of Refractory Compounds” (Plenum, New York, 1967).

    Google Scholar 

  6. G. V. Samsonov (ed.), “Refractory Transition Metal Compounds; High Temperature Cermets” (Academic Press, New York, London, 1964).

    Google Scholar 

  7. “CRC Handbook of Chemical Physics” 70th Edn (CRC Press, Boca Raton, FL, 1989–90).

  8. “Ceramic and Glasses”, Engineered Materials Handbook, Vol. 4 (ASM International, 1991).

  9. G. V. Samsonov, “The Oxide Handbook” (IFI/Plenum, New York, 1973).

    Book  Google Scholar 

  10. E. K. Storms, “The Refractory Carbides” (Academic Press, New York, 1967).

    Google Scholar 

  11. Battelle Memorial Laboratory “Engineering Property Data on Selected Ceramics”, Vol. I, Columbus, OH (Metals and Ceramics Information Centre, 1976).

  12. I. E. Campbell and E. M. Sherwood, “High-Temperature Materials and Technology” (Wiley, New York, 1967).

    Google Scholar 

  13. G. V. Samsonov and I. M. Vinitskii, “Handbook of Refractory Compounds” (Plenum Press, New York, 1980).

    Book  Google Scholar 

  14. R. Morrell, “Handbook of Properties of Technical and Engineering Ceramics” (Her Majesty's Stationary Office, London, 1985).

    Google Scholar 

  15. L. Heyne, in “Solid Electrolytes”, edited by S. Geller (Springer, Berlin, New York, 1977) p. 169.

    Chapter  Google Scholar 

  16. H. L. Tuller, in “Nonstoichiometric Oxides”, edited by O. T. Sørensen (Academic Press, New York, 1981) p. 271.

    Chapter  Google Scholar 

  17. C. Kittel, “Introduction to Solid State Physics”, 5th Edn (Wiley, New York, 1976).

    Google Scholar 

  18. D. C. Hill and H. L. Tuller, in “Ceramic Materials for Electronics — Processing, Properties, and Applications”, edited by R. C. Buchanan (Marcel Dekker, New York, 1986) p. 265.

    Google Scholar 

  19. A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld and K. S. Goto, J. Electrochem. Soc. 139 (1992) 3690.

    Article  CAS  Google Scholar 

  20. A. A. Bauer and J. L. Bates, Battelle Mem. Inst. Rept. 1930 (1974) July 31.

  21. A. D. McLeod, J. S. Haggerty and D. R. Sadoway, J. Am. Ceram. Soc. 67 (1984) 705.

    Article  CAS  Google Scholar 

  22. O. T. Özkan and A. J. Moulson, Br. J. Phys. D Appl. Phys. 3 (1979) 983.

    Article  Google Scholar 

  23. R. J. Brook, J. Yee and F. A. Kröger, J. Am. Ceram. Soc. 54 (1971) 444.

    Article  CAS  Google Scholar 

  24. A. J. Moulson and P. Popper, Proc. Br. Ceram. Soc. 10 (1968) 41.

    Google Scholar 

  25. W. J. Lackey, Mater. Sci. Res. 5 (1971) 489.

    CAS  Google Scholar 

  26. K. Kitazawa and R. L. Coble, J. Am. Ceram. Soc. 57 (1974) 245.

    Article  CAS  Google Scholar 

  27. R. Steinitz and R. Resnick, J. Appl. Phys. 37 (1966) 3463.

    Article  CAS  Google Scholar 

  28. J. P. Loup and A. M. Anthony, Rev. Hautes Temp. Réfract. 1 (1964) 15.

    CAS  Google Scholar 

  29. Idem, ibid. 1 (1964) 193.

    CAS  Google Scholar 

  30. J. P. Loup, N. Jonkiere and A. M. Anthony, High Temp. High Press. 2 (1970) 75.

    CAS  Google Scholar 

  31. D. W. Peters, L. Feinstein and C. Peltzer, J. Chem. Phys. 42 (1965) 2345.

    Article  CAS  Google Scholar 

  32. A. J. Moulson, W. R. Philips and P. Popper, in “Special Ceramics 1964”, edited by P. Popper (Academic Press, London, 1965) p. 199.

    Google Scholar 

  33. S. P. Mitoff, J. Chem. Phys. 41 (1964) 2561.

    Article  CAS  Google Scholar 

  34. E. K. Storms, in “Fundamentals of Refractory Compounds”, edited by H. H. Hausner and M. G. Bowman (Plenum, New York, 1967) p. 67.

    Google Scholar 

  35. A. L. Ivanovsky, V. I. Anisimov, D. L. Novikov, A. I. Lichtenshtein and V. A. Gubanov, J. Phys. Chem. Solids 49 (1988) 465.

    Article  Google Scholar 

  36. A. L. Ivanovsky, V. I. Anisimov, A. I. Lichtenshtein and V. A. Gubanov, ibid. 49 (1988) 479.

    Article  Google Scholar 

  37. A. L. Ivanovsky, D. L. Novikov, V. I. Anisimov and V. A. Gubanov, ibid. 49 (1988) 487.

    Article  Google Scholar 

  38. C. W. Nan, R. Z. Yuan and Z. L. Yang, Mater. Sci. Eng. B7 (1991) 283.

    Article  CAS  Google Scholar 

  39. T. H. Etsell and S. N. Flengas, Chem. Rev. 70 (1970) 339.

    Article  CAS  Google Scholar 

  40. W. H. Strehlow and E. L. Cook, J. Phys. Chem. Ref. Data 2 (1973) 163.

    Article  CAS  Google Scholar 

  41. T. H. Etsell and S. N. Flengas, J. Electrochem. Soc. 119 (1972) 1.

    Article  CAS  Google Scholar 

  42. J. A. Kilner and B. C. H. Steele, in “Nonstoichiometric Oxides”, edited by O. T. Sørensen (Academic Press, New York, 1981) p. 233.

    Chapter  Google Scholar 

  43. J. G. Bendoraitis and R. E. Salomon, J. Phys. Chem. 69 (1965) 3666.

    Article  CAS  Google Scholar 

  44. E. C. Subbarao, in “Advances in Ceramics: Science and Technology in Zirconia”, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (American Ceramic Society, Westerville, OH, 1981) p. 1.

    Google Scholar 

  45. T. Y. Tien and E. C. Subbarao, J. Chem. Phys. 39 (1963) 1041.

    Article  CAS  Google Scholar 

  46. R. E. Carter and W. L. Roth, in “Electromotive Force Measurements in High-Temperature Systems”, edited by C. B. Alcock (Institution of Mining and Metallurgy, London, 1968) p. 125.

    Google Scholar 

  47. J. M. Dixon, L. D. Lagrange, U. Merten, C. F. Miller and J. T. Porter II, J. Electrochem. Soc. 110 (1963) 276.

    Article  CAS  Google Scholar 

  48. H. L. Tuller and A. S. Nowick, in “Mass Transport Phenomena in Ceramics”, edited by A. R. Cooper and A. H. Heuer (Plenum, New York, 1975) p. 177.

    Chapter  Google Scholar 

  49. H. L. Tuller and A. S. Nowick, J. Electrochem. Soc. 122 (1975) 255.

    Article  CAS  Google Scholar 

  50. M. F. Lasker and R. A. Rapp, Z. Phys. Chem. (Frankfurtatm Main) 49 (1966) 198.

    Article  CAS  Google Scholar 

  51. H. S. Maiti and E. C. Subbarao, J. Electrochem. Soc. 123 (1976) 1713.

    Article  CAS  Google Scholar 

  52. J. W. Patterson, ibid. 118 (1971) 1033.

    Article  CAS  Google Scholar 

  53. E. T. Rodine, in “Thermoluminescence of Thorium Oxide Single Crystals”, Order No. 71-3654 (University of Nebraska, 1970) p. 140.

  54. J. E. Bauerle, J. Chem. Phys. 45 (1966) 4162.

    Article  CAS  Google Scholar 

  55. N. S. Choudhury and J. W. Patterson, J. Am. Ceram. Soc. 57 (1974) 90.

    Article  CAS  Google Scholar 

  56. W. L. Worrell, in “Solid Electrolyte”, edited by S. Geller (Springer, New York, 1977) p. 143.

    Chapter  Google Scholar 

  57. T. H. Etsell, Z. Naturfosch. A27 (1972) 1138.

    Google Scholar 

  58. J. W. Patterson, J. Electrochem. Soc. 118 (1971) 1033.

    Article  CAS  Google Scholar 

  59. J. M. Wimmer, L. R. Bidwell and N. M. Tallen, J. Am. Ceram. Soc. 50 (1967) 198.

    Article  CAS  Google Scholar 

  60. I. Bransky and N. M. Tallan, ibid. 53 (1970) 625.

    Article  CAS  Google Scholar 

  61. E. C. Subbarao and H. S. Maiti, Solid State Ionics 5 (1981) 539.

    Article  Google Scholar 

  62. H. Yahiro, T. Ohuchi, K. Eguchi and H. Arai, J. Mater. Sci. 23 (1988) 1036.

    Article  CAS  Google Scholar 

  63. J. E. Garnier, R. N. Blumenthal, R. J. Panlener and R. K. Sharma, J. Phys. Chem. Solids 37 (1976) 369.

    Article  CAS  Google Scholar 

  64. D. Y. Wang and A. S. Nowick, J. Solid State Chem. 35 (1980) 325.

    Article  CAS  Google Scholar 

  65. R. Gerhardt and A. S. Nowick, J. Am. Ceram. Soc. 69 (1986) 641.

    Article  CAS  Google Scholar 

  66. T. Takahashi, K. Ito and H. Iwahara, Rev. Energ. Primaire 2 (1966) 42.

    CAS  Google Scholar 

  67. B. Cales and J. F. Baumard, Rev. Int. Hautes Temper. Réfract. Fr. 17 (1980) 137.

    CAS  Google Scholar 

  68. R. N. Blumenthal and B. A. Pinz, J. Appl. Phys. 38 (1967) 2376.

    Article  CAS  Google Scholar 

  69. C. T. Lynch, in “High Temperature Oxides”, Part II, edited by A. M. Alper (Academic Press, New York, 1970) p. 193.

    Google Scholar 

  70. H. A. Johansen and J. G. Cleary, J. Electrochem. Soc. 111 (1964) 100.

    Article  CAS  Google Scholar 

  71. E. Aleshin and R. Roy, J. Am. Ceram. Soc. 45 (1962) 18.

    Article  CAS  Google Scholar 

  72. J. Besson, D. Deportes and G. Robert, Acad. Sci. Paris C 262 (1966) 527.

    CAS  Google Scholar 

  73. J. D. Schieltz, J. W. Patterson and D. R. Wilder, J. Electrochem. Soc. 118 (1971) 1257.

    Article  CAS  Google Scholar 

  74. A. Hammou and C. Deportes, J. Chem. Phys. 7/8 (1974) 431.

    Google Scholar 

  75. R. V. Coates and J. W. McMillan, J. Appl. Chem. 14 (1964) 346.

    Article  CAS  Google Scholar 

  76. H. U. Anderson, in “Proceedings of the 14th Risø International Symposium on Materials Science: High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors” (1993) reprint.

  77. A. M. Anthony, G. Benezech, F. Cabannes, M. Faucher, M. Foex, Vutien Loc and D. Yerouchalmi, in “Proceedings of the IUPAC 3rd International Symp. on High Temperature Technology” (Butterworths, London, 1969) p. 213.

    Google Scholar 

  78. D. B. Meadowcroft, Br. J. Appl. Phys. 2 (1969) 1225.

    Google Scholar 

  79. D. P. Karim and A. T. Aldred, Phys. Rev. B 20 (1979) 2255.

    Article  CAS  Google Scholar 

  80. K. P. Bansal, S. Kumari, B. K. Das and G. C. Jain, J. Mater. Sci. 16 (1981) 1994.

    Article  CAS  Google Scholar 

  81. H. U. Anderson, R. Murphy, S. Semachaibovorn, B. Rossing, A. Aldred, W. Procarione and R. Ackermann, in “Conference on High Temperature Science Related to Open-Cycle, Cool Fired MHD systems”, Argonne National Laboratory, Argonne, IL, April (1977).

    Google Scholar 

  82. W. J. Weber, C. W. Griffin and J. L. Bates, J. Am. Ceram. Soc. 70 (1987) 265.

    Article  CAS  Google Scholar 

  83. P. S. Devi and M. S. Rao, J. Solid State Chem. 98 (1992) 237.

    Article  CAS  Google Scholar 

  84. C. J. Yu, H. U. Anderson and D. M. Sparlin, ibid. 78 (1989) 242.

    Article  CAS  Google Scholar 

  85. H. U. Anderson, in “Processing of Crystalline Ceramics”, Materials Research, Vol. 11 (Pergamon Press, New York, 1978) p. 469.

    Book  Google Scholar 

  86. D. B. Meadowcroft and J. M. Wimmer, Am. Ceram. Soc. Bull. 58 (1979) 610.

    CAS  Google Scholar 

  87. J. P. Traverse and M. Foëx, High Temp. High Press. 1 (1969) 409.

    CAS  Google Scholar 

  88. A. De Pretis, V. Longo, F. Ricciardiello and O. Sbraizero, Silicates Ind. 7–8 (1984) 139.

    Google Scholar 

  89. A. M. Anthony and D. Yerouchalmi, Phil. Trans. R. Soc. (Lond.) 261 (1966) 504.

    Article  Google Scholar 

  90. A. M. Anthony, A. Guillot, T. Sata and J. L. Bourgeois, Rev. Hautes Temp. Réfract. 3 (1966) 147.

    CAS  Google Scholar 

  91. C. Wang, X. Xu and H. Yu, Solid State Ionics 28–30 (1988) 542.

    Article  Google Scholar 

  92. D. Janke, Metall. Trans. 13B (1982) 227.

    Article  CAS  Google Scholar 

  93. W. A. Fischer, D. Janke and M. Schulenburg, Arch. Eisenhüttenw. 47 (1976) 51.

    Article  CAS  Google Scholar 

  94. W. A. Fischer, D. Janke and M. Schulenburg, ibid. 47 (1976) 525.

    Article  CAS  Google Scholar 

  95. D. Janke, K. Schwerdtfeger, J. Mach and G. Bomberg, Stahl Eisen 99 (1976) 1211.

    Google Scholar 

  96. T. L. Pivovar and V. Ya. Tolstaya-Belik, High Temp. 8 (1979) 1227.

    Google Scholar 

  97. K. W. Browall, O. Muller and R. H. Doremus, Mater. Res. Bull. 11 (1976) 1475.

    Article  CAS  Google Scholar 

  98. B. C. H. Steele, B. E. Powell and P. M. R. Moody, Proc. Br. Ceram. Soc. 10 (1968) 87.

    Google Scholar 

  99. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics”, 2nd Edn (Wiley, New York, 1976).

    Google Scholar 

  100. H. Schmalzried, J. Chem. Phys. 33 (1960) 940.

    Article  CAS  Google Scholar 

  101. C. M. Osburn and R. W. Vest, J. Am. Ceram. Soc. 54 (1971) 428.

    Article  CAS  Google Scholar 

  102. D. R. Sempolinsky and W. D. Kingery, ibid. 63 (1980) 664.

    Article  Google Scholar 

  103. D. R. Sempolinsky, W. D. Kingery and H. L. Tuller, ibid. 63 (1980) 669.

    Article  Google Scholar 

  104. J. A. Crawford and R. W. Vest, J. Appl. Phys. 35 (1964) 2413.

    Article  CAS  Google Scholar 

  105. G. Lorenz and W. A. Fischer, Z. Phys. Chem. N.F. 18 (1958) 265.

    Article  CAS  Google Scholar 

  106. P. Kofstad and K. P. Lillerud, J. Electrochem. Soc. 127 (1980) 2410.

    Article  CAS  Google Scholar 

  107. K. Hauffe and J. Block, Z. Phys. Chem. Lpz 198 (1951) 232.

    CAS  Google Scholar 

  108. F. A. Kröger, Solid State Ionics 12 (1984) 189.

    Article  Google Scholar 

  109. E. Dörre and H. Hübner, in “Alumina”, Materials Research and Engineering, edited by B. Ilschner and N. J. Grant (Springer, Berlin, 1984).

    Google Scholar 

  110. B. V. Dutt, J. P. Hurrell and F. A. Kröger, J. Am. Ceram. Soc. 58 (1975) 420.

    Article  CAS  Google Scholar 

  111. B. V. Dutt and F. A. Kröger, ibid. 58 (1975) 474.

    Article  CAS  Google Scholar 

  112. S. K. Mohapatra and F. A. Kröger, ibid. 60 (1977) 141.

    Article  CAS  Google Scholar 

  113. Idem, ibid. 60 (1977) 381.

    Article  CAS  Google Scholar 

  114. S. K. Mohapatra, S. K. Tiku and F. A. Kröger, ibid. 62 (1979) 50.

    Article  CAS  Google Scholar 

  115. S. K. Tiku and F. A. Kröger, ibid. 63 (1980) 31.

    Article  CAS  Google Scholar 

  116. M. M. El-Aiat, L. D. Hou, S. K. Tiku, H. A. Wang and F. A. Kröger, ibid. 64 (1981) 174.

    Article  CAS  Google Scholar 

  117. M. M. El-Aiat and F. A. Kröger, ibid. 65 (1982) 280.

    Article  CAS  Google Scholar 

  118. C. R. A. Catlow, R. James, W. C. Mackrodt and R. F. Stewart, Phys. Rev. B 25 (1982) 1006.

    Article  CAS  Google Scholar 

  119. D. J. Dienes, D. O. Welch, C. R. Fischer, R. D. Hatcher, O. Lazareth and M. Samberg, ibid. 11 (1975) 3060.

    Article  CAS  Google Scholar 

  120. F. A. Kröger, in “Advances in Ceramics”, Vol. 10, edited by W. D. Kingery (American Ceramic Society, Westerville, OH, 1984) p. 1.

    Google Scholar 

  121. C. A. Hutchinson Jr and J. G. Malm, J. Am. Chem. Soc. 71 (1949) 1338.

    Article  Google Scholar 

  122. C. B. Alcock and G. P. Stravropoulos, ibid. 54 (1971) 436.

    CAS  Google Scholar 

  123. S. F. Pal'guev and A. D. Neuimin, Sov. Phys. Solid State 4 (1962) 692.

    Google Scholar 

  124. C. F. Cline, J. Carlberg and H. W. Newkirk, J. Am. Ceram. Soc. 50 (1966) 55.

    Article  Google Scholar 

  125. T. Norby and P. Kofstad, ibid. 67 (1984) 786.

    Article  CAS  Google Scholar 

  126. Idem, ibid. 69 (1986) 780.

    Article  CAS  Google Scholar 

  127. Idem, ibid. 69 (1986) 784.

    Article  CAS  Google Scholar 

  128. N. M. Tallan and R. W. Vest, ibid. 49 (1966) 401.

    Article  CAS  Google Scholar 

  129. G. V. Subba Rao, S. Ramdas, P. N. Mehrotra and C. N. R. Rao, J. Solid State Chem. 2 (1970) 377.

    Article  Google Scholar 

  130. P. Odier, J. P. Loup and A. M. Anthony, Rev. Int. Hautes Temp. Réfract. 8 (1971) 243.

    CAS  Google Scholar 

  131. J. Schieltz, J. W. Patterson and D. R. Wilder, J. Electrochem. Soc. 118 (1971) 1140.

    Article  CAS  Google Scholar 

  132. E. E. Shpil'rain, D. N. Kagan, L. S. Barkhatv and L. I. Zhmakin, Rev. Int. Hautes Temp. Réfract. 16 (1979) 233.

    CAS  Google Scholar 

  133. V. B. Tare and H. Schmalzried, Z. Phys. Chem. N.F. 43 (1964) 30.

    Article  CAS  Google Scholar 

  134. A. D. Neuimin, V. B. Balakjereva and S. Pal'guev, Dokl. Akad. Nauk SSSR 209 (1973) 1150.

    CAS  Google Scholar 

  135. Z. S. Volchenkova and D. S. Zubankova, Izv. Akad. Nauk SSSR Neorg. Mater. 12 (1976) 1695.

    CAS  Google Scholar 

  136. V. A. Dubok and V. V. Lashneva, ibid. 11 (1975) 1250.

    CAS  Google Scholar 

  137. A. Biggs, D. F. Daily and B. E. Waye, Proc. Br. Ceram. Soc. 23 (1972) 44.

    CAS  Google Scholar 

  138. E. C. Subbarao, P. H. Sutter and J. Hrizo, J. Am. Ceram. Soc. 48 (1965) 443.

    Article  CAS  Google Scholar 

  139. K. Uematsu, K. Shinozaki, O. Sakurai, N. Mizutani and M. Kato, ibid. 62 (1979) 219.

    Article  CAS  Google Scholar 

  140. E. T. Arakawa and M. W. Williams, J. Phys. Chem. Solids 29 (1968) 735.

    Article  CAS  Google Scholar 

  141. V. N. Abramov, M. G. Karin, A. I. Kuznetsov and K. K. Sidorin, Sov. Phys. Solid State 21 (1979) 47.

    Google Scholar 

  142. D. M. Roessler, W. C. Walker and E. Loh, J. Phys. Chem. Solids 30 (1969) 157.

    Article  CAS  Google Scholar 

  143. D. M. Roessler and W. C. Walker, Phys. Rev. 159 (1967) 733.

    Article  CAS  Google Scholar 

  144. H. H. Glascock and E. B. Hensley, ibid. 131 (1963) 649.

    Article  CAS  Google Scholar 

  145. E. E. Shpil'rain, D. N. Kagan, L. S. Barkhatov and L. I. Zhmakin, Rev. Int. Hautes Temp. Réfract. Fr. 16 (1979) 233.

    CAS  Google Scholar 

  146. Y. Nigara, Jpn J. Appl. Phys. 7 (1968) 404.

    Article  CAS  Google Scholar 

  147. G. Lorenz and W. A. Fischer, Z. Phys. Chem. N.F. 18 (1958) 265.

    Article  CAS  Google Scholar 

  148. B. Aronsson, T. Lundström and S. Rundqvist, “Borides, Silicides and Phosphides” (Wiley, New York, 1965).

    Google Scholar 

  149. G. Hägg, Z. Phys. Chem. 6 (1930) 221.

    Google Scholar 

  150. G. Hägg, ibid. 12 (1931) 33.

    Google Scholar 

  151. C. F. Powell, in “High-Temperature Materials and Technology”, edited by I. E. Campbell and E. M. Sherwood (Wiley, New York, 1967) p. 349.

    Google Scholar 

  152. E. Rudy and F. Benesovsky, Planseeber. Pulvermet. 8 (1960) 72.

    CAS  Google Scholar 

  153. D. A. Robins, Powder Metall. 1/2 (1958) 172.

    Article  Google Scholar 

  154. R. A. Cultler, in “Ceramics and Glasses”, Engineered Materials Handbook, Vol. 4 by S. R. Lapman, M. S. Woods and T. B. Zorc (ASM International, 1991) p. 787.

  155. G. V. Samsonov and Yu. B. Paderno, in “Refractory Transition Metal Compounds; High Temperature Cermets”, edited by G. V. Samsonov (Academic Press, New York, London, 1964) p. 146.

    Chapter  Google Scholar 

  156. W. R. King and R. C. Doward, J. Electrochem. Soc. 132 (1985) 388.

    Article  CAS  Google Scholar 

  157. M. Bouchacourt, F. Thevenot, J. Mater. Sci. 20 (1985) 1237.

    Article  CAS  Google Scholar 

  158. D. Emin, in “Boron-Rich Solids”, AIP Conference Proceedings 140, edited by D. Emin, T. Aselage, C. L. Beckel, I. A. Howard and C. Wood, Albuquerque, NM (Am. Inst. Physics, New York, 1985) p. 189.

    Google Scholar 

  159. C. Wood, ibid. p. 206.

    Google Scholar 

  160. C. G. Harman and W. G. Jr. Mixer, US At. Energy Comm. Rept. BMI-784, Battele Memorial Institute, June 1952 (1952).

  161. N. B. Elsner, G. H. Reynolds, J. H. Norman and C. H. Shearer, in “Boron-Rich Solids”, AIP Conference Proceedings 140, edited by D. Emin, T. Aselage, C. L. Beckel, I. A. Howard and C. Wood, Albuquerque, New Mexico(1985) p. 59.

    Google Scholar 

  162. C. F. Powel, I. E. Cambell and B. W. Gonser, “Vapor Plating” (Wiley, New York, 1955).

    Google Scholar 

  163. M. F. Yan, K. Niwa, H. M. O'Brian Jr and W. S. Young, “Ceramic Substrates and Packages for Electronic Applications”, Advances in Ceramics, Vol. 26 (American Ceramic Society, Westerville, OH, 1989).

    Google Scholar 

  164. W. Werdecker and F. Aldinger, IEEE Trans. Compon. Hybrids Manuf. Technol. 7 (1984) 399.

    Article  Google Scholar 

  165. J. Pastrnak and L. Roskovcova, Phys. Status Solidi 26 (1968) 591.

    Article  CAS  Google Scholar 

  166. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg and S. L. Gibert, J. Appl. Phys. 44 (1973) 292.

    Article  CAS  Google Scholar 

  167. R. A. Young and J. H. Harris, J. Am. Ceram. Soc. 73 (1990) 3238.

    Article  Google Scholar 

  168. R. W. Francis and W. L. Worrell, J. Electrochem. Soc. 123 (1976) 430.

    Article  CAS  Google Scholar 

  169. M. Yahagi and K. S. Goto, J. Jpn. Inst. Metals Sendai 47 (1983) 419.

    Article  CAS  Google Scholar 

  170. V. L. Richards, T. Y. Tien and R. D. Pehlke, J. Mater. Sci. 22 (1987) 3385.

    Article  CAS  Google Scholar 

  171. S. A. Jang and G. M. Choi, J. Am. Ceram. Soc. 76 (1993) 957.

    Article  CAS  Google Scholar 

  172. M. Zulfequar and A. Kumar, Adv. Ceram. Mater. 3 (1988) 332.

    Article  CAS  Google Scholar 

  173. J. M. Blocher Jr, in “High-Temperature Materials and Technology”, edited by I. E. Campbell and E. M. Sherwood (Wiley, New York, 1967) p. 379.

    Google Scholar 

  174. S. A. Jang and G. M. Choi, J. Am. Ceram. Soc. 75 (1993) 3145.

    Article  Google Scholar 

  175. W. A. Groen, J. G. Van Lierop and J. M. Toonen, J. Eur. Ceram. Soc. 11 (1993) 353.

    Article  CAS  Google Scholar 

  176. M. J. Rand and J. F. Roberts, J. Electrochem. Soc. 115 (1968) 423.

    Article  CAS  Google Scholar 

  177. R. H. Wentorf Jr, J. Chem. Phys. 26 (1957) 956.

    Article  CAS  Google Scholar 

  178. F. R. Corrigan and F. P. Bundy, ibid. 63 (1975) 3812.

    Article  CAS  Google Scholar 

  179. H. P. R. Frederikse, A. H. Kahn and A. L. Dragoo, J. Am. Ceram. Soc. 68 (1985) 131.

    Article  CAS  Google Scholar 

  180. R. Steinitz, in “Fundamentals of Refractory Compounds”, edited by H. H. Hausner and M. G. Bowman (Plenum, New York, 1967) p. 155.

    Google Scholar 

  181. I. I. Zhukova, V. A. Fomichev, A. S. Vinogradov and T. M. Zimkina, Sov. Phy. Solid State 10 (1969) 1097.

    Google Scholar 

  182. J. H. Westbrook and E. R. Stover, in “High-Temperature Materials and Technology”, edited by I. E. Campbell and E. M. Sherwood (Wiley, New York, 1967) p. 312.

    Google Scholar 

  183. J. T. Norton, H. Blumenthal and S. J. Sindeband, Metall. Trans. 185 (1949) 749.

    Google Scholar 

  184. N. V. Kolomoets, V. S. Neshpor, G. V. Samsonov and S. A. Semenkovich, Sov. Phys. Tech. Phys. (Engl. Transl.) 3 (1958) 2186.

    Google Scholar 

  185. G. V. Samsonov, Zh. Tekn. Fiz. 26 (1956) 716.

    CAS  Google Scholar 

  186. H. Remy, “Inorganic Chemistry II” (Akad. Verlagsges, Leipzig, 1959) p. 68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.C., Akbar, S.A., Chen, W. et al. Electrical properties of high-temperature oxides, borides, carbides, and nitrides. JOURNAL OF MATERIALS SCIENCE 30, 1627–1641 (1995). https://doi.org/10.1007/BF00351591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351591

Keywords

Navigation