Skip to main content
Log in

Variability of biochemical composition and size distributions of seston in the euphotic zone of the Bay of Biscay: implications for microplankton trophic structure

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Particle-size distributions and several biochemical components of seston were studied from October 1986 to December 1987 in surface waters of the Bay of Biscay. Variance partitioning of hydrographic and seston parameters indicates that, although seasonal variability related to the thermal cycle was important, most of the differences in seston concentration were caused by spatial components of variance. Changes in the vertical structure of the water column appeared to be the principal source of variability. Phytoplankton blooms in spring and fall and the effects of the coastal upwelling and the thermocline during summer were traced using seston concentration and biochemical composition. The different seston measurements were scaled according to their correlations with total concentration and particle size. Photosynthetic pigment biomass was related to both large and small partieles. However, concentrations of particulate proteins, lipids and carbohydrates were more related to small particles. Although not specifically analysed, low concentrations of inorganic particles and detritus can be expected in the study area, thus most of the particulate organic matter was associated with small, non-pigmented organisms, particularly in surface waters during the period of thermal stratification. The variability in concentrations of total seston and particulate organic matter was mainly due to variations in particulate proteins, lipids and carbohydrates; pigment concentrations were of secondary importance. Expressed as the ratio chlorophyll a: particulate protein-nitrogen, phytoplankton constituted an important fraction of the microplankton biomass only during spring blooms, when it averaged 75% of the particulate protein-nitrogen. In constrast, <30% of protein-nitrogen was related to chlorophyll a during the summer. These results suggest that an oligotrophic structure based on the “microbial-loop” prevails in microplankton assemblages of surface waters for most of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10: 257–263

    Google Scholar 

  • Bakker, C., Prins, T. C., Tackx, M. L. M. (1985). Interpretation of particle spectra of electronic counters by microscopical methods. Hydrobiol. Bull. 19: 49–59

    Google Scholar 

  • Banse, K. (1977). Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Mar. Biol. 41: 199–212

    Google Scholar 

  • Banse, K. (1982). Cell volumes, maximal growth rates of unicellular algae and ciliates and the role of ciliates in the marine pelagial. Limnol. Oceanogr. 27: 1059–1071

    Google Scholar 

  • Barlow, R. G. (1982). Phytoplankton ecology in the southern Benguela current. I. Biochemical composition. J. exp. mar. Biol. Ecol. 63: 209–227

    Google Scholar 

  • Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917

    Google Scholar 

  • Bode, A., Fernández, E., Botas, J. A., Anadón, R. (1990). Distribution and composition of suspended particulate matter related to a shelf-break saline intrusion in the Cantabrian Sea (Bay of Biscay). Oceanol. Acta 13: 219–228

    Google Scholar 

  • Botas, J. A., Bode, A., Fernández, E., Anadón, R. (1988). Distributioon de una intrusión de agua de elevada salinidad en el Cantábrico Central: distribución de los nutrientes inorgánicos y su relación con el fitoplancton. Investigación pesq. 52: 559–572

    Google Scholar 

  • Botas, J. A., Fernández, E., Bode, A., Anadon, R. (1989a). Water masses off the Central Cantabrian Coast. Scientia mar. 53: 755–761

    Google Scholar 

  • Botas, J. A., Fernández, E., Bode, A. Anadón, R. (1990). A persistent upwelling off the central Cantabrian coast (Bay of Biscay). Estuar., cstl Shelf Sci. 30: 185–199

    Google Scholar 

  • Botas, J. A., Fernández, E., Bode, A., Anadón, R., Anadón, E. (1989b). Datos básicos de las campañas “COCACE”. I.-Hidrografia, nutrientes, fitoplancton y seston en el Cantábrico Central. Biobas. Revta Biol. Univ. Oviedo (Supl.). 1: 1–80

    Google Scholar 

  • Cabal, J. A., Acuña, J. L., Menendez, P., Perez, C., Villegas, M. L., Alvarez-Marques, F., Anadón, E. (1990). Datos básicos de las campañas “COCACE”: II.-Zooplancton de la costa central del Cantábrico (Asturias). Biobas. Revta Biol. Univ., Oviedo (Supl.). 2: 1–63

    Google Scholar 

  • Chan, A. T. (1978). Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. J. Phycol. 14: 396–402

    Google Scholar 

  • Chanut, J. P., Poulet, S. A. (1982). Short-term variability of the size spectra of suspended particles in a rapidly changing environment. Estuar., cstl Shelf Sci. 15: 497–513

    Google Scholar 

  • Csanady, G. T. (1986). Mass transfer to and from small particles in the sea. Limnol. Oceanogr. 31: 237–248

    Google Scholar 

  • Cullen, J. J. (1982). The deep chlorophyll maximum: comparing vertical profiles of chlorophyll. Can. J. Fish. aquat. Sciences 39: 791–803

    Google Scholar 

  • Cushing, D. H. (1989). A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J. Plankton Res. 11: 1–13

    Google Scholar 

  • Dortch, Q., Clayton, J. R., Thoresen, S. S., Cleveland, J. S., Bressler, S. L., Ahmed, S. I. (1985). Nitrogen storage and use of biochemical indices to assess nitrogen deficiency and growth rate in natural plankton populations. J. mar. Res. 43: 437–464

    Google Scholar 

  • Dortch, Q., Packard, T. T. (1989). Differences in biomass structure between oligotrophic and eutrophic marine ecosystems. Deep-Sea Res. 36: 223–240

    Google Scholar 

  • Dortch, Q., Postel, J. R. (1989). Biochemical indicators of phytoplankton N utilization during upwelling off the coast of Washington. Limnol. Oceanogr 34: 758–773

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356

    Google Scholar 

  • Eisma, D., Kalf, J. (1987). Distribution, organic matter content and particle size of suspended matter in the North Sea. Neth. J. Sea Res. 21: 265–285

    Google Scholar 

  • Estrada, M. (1985). Primary production at the deep chlorophyll maximum in the Western Mediterranean. Proc. 19th Eur mar. Biol. Symp. 109–121. [Gibbs, P. E. (ed.) Cambridge University Press, Cambridge England]

    Google Scholar 

  • Fenchel, T. (1974). Intrinsic rate of natural increase: the relationship with body size. Oecologia (Berl.) 30: 75–81

    Google Scholar 

  • Fenchel, T. (1988). Marine plankton food chains. A. Rev. Ecol. Syst. 19: 19–38

    Google Scholar 

  • Fernández, E. (1990a). Sistemas frontales y de afloramiento en el Cantábrico Occidental: relación con la estructura de las redes tróficas planctónicas. In: Urrutia, J., Rayo, A. (eds.) Oceanografîa del Golfo de Vizcaya. Universidad del País Vasco, San Sebastian, Spain, p. 191–223

    Google Scholar 

  • Fernández, E. (1990b). Composición, distribución y producción del fitopancton en el Cantábrico Central. Ph.D. dissertation. Universidad de Oviedo, Oviedo, Spain

    Google Scholar 

  • Fernández E., Bode, A., Botas, A., Anadón, R. (1991). Microplankton assemblages associated with saline fronts during the spring bloom in the Central Cantabrian Sea: differences in trophic structure between water bodies. J. Plankton Res 13: 1239–1256

    Google Scholar 

  • Flos, J. (1976). Seston superficial de la zona de afloramiento del NW de Africa. Oecologia aquat. barcelona 2: 27–39

    Google Scholar 

  • Flos, J. (1982). Producción primaria, clorofila a y visibilidad del disco de Secchi en el Golfo de Vizcaya. Investigación pesq. 46: 215–230

    Google Scholar 

  • Flos, J. (1984). Variability of Coulter counter data and their relationship with other oceanographical parameters. Pubbl. Staz. zool. Napoli (I: Mar. Ecol.) 5: 197–216

    Google Scholar 

  • Flos, J., Asciotti, F., Carrol, J. D., Dallot, S., Frontier, S., Gower, J. C., Haedrich, R. L., Laurec, A. (1987). Data analysis in pelagic community studies. In: Legendre, P. (ed.) Developments in numerical ecology. Springer-Verlag, Berlin, p. 495–520 (NATO-ASI Ser)

    Google Scholar 

  • Grasshoff, K., Ehrhardt, M., Kremling, M. (eds.) (1983). Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Grover, J. P. (1989): Influence of cell shape and size on algal competitive ability. J. Phycol. 25: 402–405

    Google Scholar 

  • Healey, F. P., Henzel, L. L. (1979). Indicators of phosphorus and nitrogen deficiency in five algae in culture. J. Fish. Res. Bd Can. 36: 1364–1369

    Google Scholar 

  • Herbland, A., Voituriez, B. (1979). Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean. J. mar. Res. 37: 87–102

    Google Scholar 

  • Hitchock, G. L. (1982). A comparative study of the size-dependent organic composition of marine diatoms and dinoflagellates. J. Plankton Res. 4: 363–377

    Google Scholar 

  • Jeffrey, S. W. and Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants: algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194

    Google Scholar 

  • Lebart, L., Morineau, A., Fenelon, J. P. (1985). Tratamiento estadístico de datos. Marcombo Boixareu, Barcelona

    Google Scholar 

  • Li, W. K. W., Subba Rao, D. V., Harrison, W. G., Smith, J. C., Cullen, J. J., Irwin, B., Platt, T. (1983). Autotrophic picoplankton in the tropical ocean. Science, N.Y. 219: 292–295

    Google Scholar 

  • Lowry, M., Rosenbrough, N. J., Fara, A. L., Randall, J. R. (1951). Protein measurement with the folin phenol reagent. J. biol. Chem. 193: 265–275

    Google Scholar 

  • Mann, K. H. (1988). Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol. Oceanogr. 33: 910–930

    Google Scholar 

  • Marsh, J. B., Weinstein, D. B. (1976). Simple charring method for determination of lipids. J. Lipid Res. 7: 571–576

    Google Scholar 

  • Mayzaud, P., Chanut, J. P., Ackman, R. G. (1989). Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar. Ecol. Prog. Ser. 56: 189–204

    Google Scholar 

  • Mayzaud, P., Taguchi, S., Laval, P. (1984). Seasonal patterns of seston characteristics in Bedford Basin, Nova Scotia, relative to zooplankton feeding: a multivariate approach. Limnol. Oceanogr 29: 745–762

    Google Scholar 

  • Moal, J., Martin-Jezequel, V., Harris, R. P., Samain, J. F., Poulet, S. A. (1987). Interspecific and intraspecific variability of the chemical composition of marine phytoplankton. Oceanol. Acta 10: 339–346

    Google Scholar 

  • Munk, W. H., Riley, G. A. (1952). Absorption of nutrients by aquatic plants. J. mar. Res. 11: 215–240

    Google Scholar 

  • Oliveri, E. T. (1985). Feasibility of estimating phytoplankton size and biomass in fresh and preserved samples from the Benguela current with a Coulter counter. S. Afr. J. mar. Sci. 3: 99–110

    Google Scholar 

  • Orloci, L. (1975) Multivariate analysis in vegetation research. Dr. W. Junk, The Hague, Netherlands

    Google Scholar 

  • Packard, T. T., Dortch, Q. (1975). Particulate protcin-nitrogen in North Atlantic surface waters. Mar. Biol. 33: 347–354

    Google Scholar 

  • Parsons, T. R., Strickland J. D. H. (1962). Oceanic detritus. Science, N.Y. 136: 313–314

    Google Scholar 

  • Pick, F. R. (1987). Carbohydrate and protein of lake seston in relation to plankton nutrient deficiency. Can. J. Fish. aquat. Sciences 44: 2095–2101

    Google Scholar 

  • Poulet, S. A., Chanut, J. P., Morissette, M. (1986a). Etude des espectres de taille des particules en suspension dans l'estuaire et le golfe du Saint-Laurent. I. Variations spatiales. Oceanol. Acta 9: 179–189

    Google Scholar 

  • Poulet, S. A., Cossa, D., Marti, J. C. (1986b). Combined analysis of the size spectra and biochemical composition of particles in the St. Lawrence estuary. Mar. Ecol. Prog. Ser. 30: 205–214

    Google Scholar 

  • Romankevich, E. A. (1984). Geochemistry of organic matter in the ocean. Springer-Verlag, Berlin

    Google Scholar 

  • SAS Institute Inc. (1985). SAS procedures guide for personal computers. Version 6 ed. SAS Institute, Inc., Cary, North Carolina

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., San Fransisco

    Google Scholar 

  • Ulanowicz, R. E. (1981). Models of particle-size spectra. In: Platt, T., Mann, K. H., Ulanowicz, R. E. (eds.) Mathematical models in oceanography. UNESCO, Paris, France, p. 72–79

    Google Scholar 

  • Wakeham, S. G., Canuel, E. A. (1988). Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: implications for particle dynamics. J. mar. Res. 46: 183–213

    Google Scholar 

  • Yentsch, C. S., Menzel, D. W. (1963). A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221–231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bode, A., Fernández, E. Variability of biochemical composition and size distributions of seston in the euphotic zone of the Bay of Biscay: implications for microplankton trophic structure. Marine Biology 114, 147–155 (1992). https://doi.org/10.1007/BF00350864

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350864

Keywords

Navigation