Skip to main content
Log in

Spring bloom sedimentation in a subarctic ecosystem

I. Nutrient sensitivity

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Results from a 5-yr study (1985 to 1989) in Auke Bay, Alaska show that termination of the spring bloom consistently occurred at limiting nitrate concentrations. Following nutrient exhaustion, phytoplankton sinking rates increased and displayed greater temporal variability. Threshold nitrate concentrations, approximating Ks values of the species present, were found to signal initiation of increased sedimentation. For Thalassiosira aestivalis, the threshold was ∼2 μmol l-1, while for Skeletonema costatum the threshold was ∼1 μmol l-1, suggesting genus-specific differences in sinking-rate sensitivity to nitrate exhaustion. Overall, sinking rates of the three principal genera ranked (high to low) Thalassiosira spp.> S. costatum>Chaetoceros spp., while the nitrate sensitivities of the sinking rates of the genera ranked (high to low) Thalassiosira spp.> Chaetoceros spp.> S. costatum. Thalassiosira spp. showed the most consistent sinking rate increases following nutrient impoverishment. During a bloom dominated by T. aestivalis, a decrease of cell sinking rate with depth coincided with a decrease in short-term nutrient stress as measured by intracellular nitrate pools. In addition, no correlation was found between chain length or aggregate formation and sinking rate for this species. Though we measured only small-scale cell-cell adhesion, not larger-scale marine snow formation, this supports the notion that the sinking rates of Thalassiosira spp. were controlled primarily by cell physiology. For S. costatum, however, shorter chains sank faster. The sinking behavior of the species studied here figures prominently in their pelagic ecology and in the carbon flux of coastal ecosystems, both of which are driven by short-term variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Allen, M. B. (1971). High latitude phytoplankton. A. Rev. Ecol. Syst. 2: 261–276

    Google Scholar 

  • Armstrong, F. A., Stearns, C. R., Strickland, J. D. H. (1967). Measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment. Deep-Sea Res. 14: 381–389

    Google Scholar 

  • Berger, W. H., Smetacek, V., Wefer, D. (1989). Ocean productivity and paleoproductivity: an overview. In: W. H. Berger, V. Smetacek, G. Wefer (eds.) Productivity of the ocean: present and past. Wiley & Sons Ltd., New York, p. 1–34

    Google Scholar 

  • Bienfang, P. K. (1981a). Sinking rates of Cricosphaera carterae Braarud II. Senescence response to various limiting substrates in non-steady state populations. J. exp. mar. Biol. Ecol. 49: 235–244

    Google Scholar 

  • Bienfang, P. K. (1981b). SETCOL — A technologically simple and reliable method for measuring phytoplankton sinking rates. Can. J. Fish. aquat. Sciences 38: 1289–1294

    Google Scholar 

  • Bienfang, P. K., Harrison, P. J., Quarmby, L. M. (1982). Sinking rate responses to depletion of nitrate, phosphate and silicate in four marine diatoms. Mar. Biol. 67: 295–302

    Google Scholar 

  • Collos, Y. (1982). Transient situations in nitrate assimilation by marine diatoms III: short term uncoupling of nitrate uptake and reduction. J. exp. mar. Biol. Ecol. 62: 285–295

    Google Scholar 

  • Dortch, F. Q. (1980). Nitrate and ammonium uptake and assimilation in three marine diatoms. PhD Thesis. University of Washington, Seattle, Washington

    Google Scholar 

  • Dugdale, R. C., Jones, B. H., MacIsaac, J. J., Goering, J. J. (1981). Adaptation of nutrient assimilation. Can. Bull. Fish. aquat. Sciences 210: 234–250

    Google Scholar 

  • Eppley, R. W., Rogers, J. N., McCarthy, J. J. (1969). Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14: 912–919

    Google Scholar 

  • Falkowski, P. G. (1975). Nitrate uptake in marine phytoplankton: (nitrate-chloride)-activated ATP from Skeletonema costatum (Bacillariophyceae). J. Phycol. 11: 323–326

    Google Scholar 

  • Garrison, D. L. (1981). Monterey Bay phytoplankton. II. Resting spore cycles in coastal diatom populations. J. Plankton Res. 3:137–156

    Google Scholar 

  • Goering, J. C., Patton, C. J., Shileds, W. W. (1973a). Nutrient cycles. In: Hood, E. W., Shields, W. W., Kelley, E. J. (eds.) Environmental studies of Port Valdez. Univ. of Alaska, Fairbanks, Inst. Mar. Sci. Occ. Publ. No. 2, p. 253–271

    Google Scholar 

  • Goering, J. C., Patton, C. J., Shields, W. W. (1973b). Primary production. In: Hood, E. W., Shields, W. W., Kelley, E. J. (eds.) Environmental studies of Port Valdez. Univ. of Alaska, Fairbanks, Inst. Mar. Sci. Occ. Publ. No. 2, p. 253–271

    Google Scholar 

  • Hager, F. W., Gordon, L. I., Park, T. K. (1968). A practical manual for the use of the Technicon AutoAnalyzer in seawater nutrient analysis. Tech. Rep. Dept. Oceanogr. 68-33, Oregon State Univ., Oorvallis, Oregon p. 1–31

    Google Scholar 

  • Harrison, P. J., Conway, H. L., Holmes, R. W., Davis, C. O. (1977). Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum and Thalassiosira gravida. Mar. Biol. 43: 19–31

    Google Scholar 

  • Harrison, P. J., Turpin, D. H., Bienfang, P. K., Davis, C. O. (1986). Sinking as a factor affecting phytoplankton species succession: the use of selective loss semicontinuous cultures. J. exp. mar. Biol. Ecol. 99: 19–30

    Google Scholar 

  • Kanda, J., Ziemann, D. A., Conquest, L. D., Bienfang, P. K. (1989). Light-dependency of nitrate uptake by phytoplankton over the spring bloom in Auke Bay, Alaska. Mar. Biol. 103:563–569

    Google Scholar 

  • Lannergren, C., Skjoldal, H. R. (1976). The spring phytoplankton bloom in Lindaspollene, a land-locked Norwegian fjord: autotrophic and heterotrophic activities in relation to nutrients. In: Persooné, G., Jaspers, E. (eds.) Proceedings of the 10th European marine biology symposium, Ostend, Belgium, Vol. 2. Universal Press, Ostend, p. 363–391

    Google Scholar 

  • Legendre, L. (1980). Hydrodynamic control of marine phytoplankton production: the paradox of stability. In: Nihoul, J. C. J. (ed.) Ecohydrodynamics, Elsevier, Amsterdam, p. 191–207

    Google Scholar 

  • Riebesell, U. (1989). Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom. Mar. Ecol. Prog. Ser. 54: 109–119

    Google Scholar 

  • Riley, G. A., Stommel, H., Bumpus, D. F. (1949). Quantitative ecology of the plankton of the western North Atlantic. Bull. Bingham oceanogr. Coll 12: 1–169

    Google Scholar 

  • Sancetta, C., Calvert, S. E. (1988). The annual cycle of sedimentation in Saanich Inlet, British Columbia: implications for the interpretation of diatom fossil assemblages. Deep-Sea Res. 35: 71–90

    Google Scholar 

  • Skjoldal, H. R., Lannergren, C. (1978). The spring phytoplanloon bloom in Lindaspollene, a land-locked Norwegian fjord. II. Biomass and activity of net and nanoplankton. Mar. Biol. 47: 313–323

    Google Scholar 

  • Skjoldal, H. R., Wassmann, P. (1986). Sedimentation of particulate organic matter and silicate during spring and summer in Lindaspollene, western Norway. Mar. Ecol. Progr. Ser. 30: 49–63

    Google Scholar 

  • Smayda, T. J. (1970). The suspension and sinking of phytoplankton in the sea. Oceanogr. mar. Biol. A. Rev. 8: 353–414

    Google Scholar 

  • Smetacek, V. (1980). The annual cycle of sedimentation in relation to plankton ecology in western Kiel Bight. Ophelia 1: 65–76

    Google Scholar 

  • Smetacek, V. (1985). The annual cycle of Kiel Bight plankton: a long-term analysis. Estuaries 8: 145–157

    Google Scholar 

  • Smetacek, V., Brockel, K. v., Zeitzschel, B. (1978). Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Mar. Biol. 47: 211–226

    Google Scholar 

  • Technicon, Inc. (1977). Nitrate and nitrite in water and seawater. Technicon, Inc. Industrial Method No. 158, f/w/a., Tarrytown, New York

  • Thoresen, S. S., Dortch, Q., Ahmed, S. I. (1982). Comparison of methods for extracting intracellular pools of inorganic nitrogen from marine phytoplankton. J. Plankton Res. 4: 695–704

    Google Scholar 

  • Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. verein. theor. angew. Limnol. 9: 1–38

    Google Scholar 

  • Waite, A., Bienfang, P. K., Harrison, P. J. (1992). Spring bloom sedimentation in a subarctic ecosystem. II. Succession and sedimentation. Mar. Biol. 114: 131–138

    Google Scholar 

  • Wassmann, P. (1983). Sedimentation of organic and inorganic particulate material in Lindaspollene, a stratified, land-locked fjord in western Norway. Mar. Ecol. Prog. Ser. 13: 237–248

    Google Scholar 

  • Wilkerson, F. P., Dugdale, R. C. (1987). The use of large shipboard barrels and drifters to study the effects of coastal upwelling on phytoplankton dynamics. Limnol. Oceanogr. 32: 368–382

    Google Scholar 

  • Ziemann, D. A., Conquest, L. D., Fulton-Bennet, K. W., Bienfang, P. K. (1990). Interannual variability in the Auke Bay phytoplankton. In: Ziemann, D. A., Fulton-Bennet, K. W. (eds.) APPRISE: Interannual variability and fisheries recruitment. The Oceanic Institute, Honolulu, Hawaii, p. 129–170

    Google Scholar 

  • Ziemann, D. A., Conquest, L. D., Sato, V. (1985). Association of primary production and recruitment in subarctic ecosystems 1985. Technical Report, Vol. 1. The Oceanic Institute, Waimanalo, Hawaii

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. O'Dor, Halifax

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waite, A., Bienfang, P.K. & Harrison, P.J. Spring bloom sedimentation in a subarctic ecosystem. Marine Biology 114, 119–129 (1992). https://doi.org/10.1007/BF00350861

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350861

Keywords

Navigation