Skip to main content
Log in

Reproductive biology and population structure of the deep-sea hydrothermal vent worm Paralvinella grasslei (Polychaeta: Alvinellidae) at 13°N on the East Pacific Rise

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Paralvinella grasslei is a polychaetous annelid living in the harsh, unstable and heterogeneous environmental conditions found at deep-sea hydrothermal vent sites in the eastern Pacific. The aim of this work was to examine the possible influence of the reproductive biology of P. grasslei on the structure of its populations. Maximum observed oocyte size inside the oviduct is 275 μm, and fecundity is relatively low. Examination of gametes and young specimens suggested a direct benthic development for this species. The population structure of P. grasslei at 13°N/EPR (EPR=East Pacific Rise) revealed a discontinuous recruitment which seems to be synchronized within vent sites and fields. The data also suggested the occurrence of discrete breeding periods. P. grasslei probably reproduces several times a years, with an apparent periodicity. Tidal signals could be a possible cue for the coordination of the reproductive cycle. The life-history of P. grasslei is discussed in light of the reproductive biology of other terebellomorph polychaetes, and seems to be well adapted for colonizing the unstable environment of hot vents. Two main hypotheses can explain the dissemination processes of this species along axial oceanic ridges. The influence of nearbottom currents occurring along the central “graben” of the East Pacific Rise can be cosidered to account for part of the transport of larvae and juveniles, but the observations of polychaete erpochaetes on the test of hydrothermal bythograeid crabs and evidence that crab migrations occur between vents also support the possibility of zoochory for the dissemination of alvinellid polychaetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arp A, Childress JJ (1981) Functional characteristics of the blood of the deep-sea hydrothermal vent brachyuran crab. Science, NY 214: 559–561

    Google Scholar 

  • Bhattacharya CG (1967) A simple method of resolution of a distribution into gaussian components. Biometrics 23: 115–135

    Google Scholar 

  • Bhaud M (1988) Change in setal pattern during early development of Eupolymnia nebulosa (Polychaeta: Terebellidae) grown in simulated natural conditions. J mar biol Ass UK 68: 677–687

    Google Scholar 

  • Bhaud M (1990) Conditions d'établissement des larves d'Eupolymnia nebulosa: acquis expérimentaux et observations en milieu naturel: utilité d'une confrontation. Océanis, Paris 16: 181–189

    Google Scholar 

  • Blake JA (1991) Larval development of Polychaeta from the northern California coast. V. Ramex californiensis Hartman (Polychaeta: Terebellidae). Bull mar Sci 48: 448–460

    Google Scholar 

  • Cassie RM (1954) Some uses of probability paper in the analysis of size frequency distributions. Aust J mar Freshwat Res 5: 513–525

    Google Scholar 

  • Cazaux C (1982) Développement larvaire de l'Ampharetidae lagunaire Alkmaria romijni Horst, 1919. Cah Biol mar 23: 143–157

    Google Scholar 

  • Chevaldonné P, Desbruyères D, Le Haître M (1991) Time-series of temperature from three deep-sea hydrothermal vent sites. Deep-Sea Res 38: 1417–1430

    Google Scholar 

  • Chevaldonné P, Jollivet D (1993) Videoscopic study of deep-sea hydrothermal vent alvinellid polychaete populations: biomass estimation and behaviour. Mar Ecol Prog Ser 95: 251–262

    Google Scholar 

  • Christie G (1986) Observations on the reproductive biology of Trichobranchus glacialis Malmgren, 1986 (Polychacta: Trichobranchidae). Sarsia 71: 259–265

    Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, Von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, Van Andel TH (1979) Submarine thermal springs on the Galápagos Rift. Science, NY 203: 1073–1083

    Google Scholar 

  • Desbruyères D (1993) La vie au fond des océans. Pour la Science 192: 80–89

    Google Scholar 

  • Desbruyères D, Gaill F, Laubier L, Fouquet Y (1985) Polychaetous annelids from hydrothermal vent ecosystems: an ecological overview. Bull biol Soc Wash 6: 103–115

    Google Scholar 

  • Desbruyères D, Laubier L (1982) Paralvinella grasslei new genus, new species of Alvinellinae (Polychaeta: Ampharetidae) from the Galápagos Rift geothermal vents. Proc biol Soc Wash 95: 484–494

    Google Scholar 

  • Desbruyères D, Laubier L (1986) Les Alvinellidae, une famille nouvelle d'annélides polychètes inféodées aux source hydrothermales sous-marines: systématique, biologie et écologie. Can J Zool 64: 2227–2245

    Google Scholar 

  • Desbruyères D, Laubier L (1991) Systematics, phylogeny, ecology and distribution of the Alvinellidae (Polychaeta) from deep-sea hydrothermal vents. Ophelia (Suppl) 5: 31–45

    Google Scholar 

  • Duchêne JC, Bhaud M (1988) Uncinial patterns and age determination in terebellid polychaetes. Mar Ecol Prog Ser 49: 267–275

    Google Scholar 

  • Eckelbarger KJ (1974) Population biology and larval development of the terebellid polychaete Nicolea zostericola. Mar Biol 27: 101–113

    Google Scholar 

  • Eckelbarger KJ (1975) A light and electron microscope investigation of gametogenesis in Nicolea zostericola (Polychaeta: Terebellidae). Mar Biol 30: 353–370

    Google Scholar 

  • Franzén A, Rice SA (1988) Spermatogenesis, male gametes and gamete interaction. In: Westheide W, Hermans CO (eds) The ultrastructure of Polychaeta. Microfauna marina. Vol. 4. Gustav Fischer Verlag, Stuttgart, pp 309–333

    Google Scholar 

  • Frontier S, Picho Viale D (1991) Écosystèmes: structure, fonctionnement, évolution. Masson, Paris

    Google Scholar 

  • Fustec A, Desbruyères D, Juniper SK (1987) Deep-sea hydrothermal vent communities at 13°N on the East Pacific Rise: micro distribution and temporal variations. Biol Oceanogr 4: 121–164

    Google Scholar 

  • Guillou M, Hily C (1983) Dynamics and biological cycle of a Melinna palmata (Ampharetidae) population during the recolonization of a dredged area in the vicinity of the harbour of Brest (France). Mar Biol 73: 43–50

    Google Scholar 

  • Harding JP (1949) The use of probability paper for the graphical analysis of polymodal frequency distributions. J mar biol Ass UK 28: 141–153

    Google Scholar 

  • Hermans CO (1979) Polychaete egg sizes, life histories and phylogeny. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, pp 1–11

    Google Scholar 

  • Herpin R (1925) La ponte et le développement chez une annélide polychète sédentaire, Nicolea zostericola. C r hebd Séanc Acad Sci, Paris (Sér III) 180: 864–865

    Google Scholar 

  • Hutchings PA (1973) Gametogenesis in a Northumberland population of the polychaete Melinna cristata. Mar Biol 18: 199–211

    Google Scholar 

  • Johnson HP, Tunnicliffe V (1985) Time-series measurements of hydrothermal activity on northern Juan de Fuca ridge. Geophys Res Lett 12: 685–688

    Google Scholar 

  • Johnson KS, Childress JJ, Beehler CL, Sakamoto CM (1994) Biogeochemistry of hydrothermal vent mussel communities: the deep-sea analogue to the intertidal zone. Deep-Sea Res 41: 993–1011

    Google Scholar 

  • Jollivet D (1993) Distribution et évolution de la faune associée aux sources hydrothermales à 13°N sur la dorsale du Pacifique oriental: le cas des polychètes Alvinellidae. Thèse de doctorat. Université de Bretagne Occidentale, Brest

  • Jollivet D, Desbruyères D, Bonhomme F, Moraga D (1995) Genetic differentiation of deep-sea hydrothermal vent alvinellid populations (Annelida: Polychaeta) along the East Pacific Rise. Heredity, Lond 74: 376–391

    Google Scholar 

  • Lalou C (1991) Deep-sea hydrothermal venting: a recently discovered marine system. J mar Syst 1: 403–440

    Google Scholar 

  • Little SA, Stolzenbach KD, Grassle JF (1988) Tidal current effects on temperature in diffuse hydrothermal flow: Guaymas Basin. Geophys Res Lett 15: 1491–1494

    Google Scholar 

  • Lonsdale PF (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res 24: 857–863

    Google Scholar 

  • Lutz RA (1992) The biology of deep-sea vents and seeps: Alvin's magical mystery tour. Oceanus 34(4): 75–83

    Google Scholar 

  • McDonald PDM, Green PEJ (1988) Users guide to program MIX 2.3: an interactive program for fitting mixtures of distributions. Technical Notes on Release 2.3. Ichtus Data Systems, Hamilton, Ontario, Canada

    Google Scholar 

  • McDonald PDM, Pitcher TJ (1979) Age-groups from size frequency data: a versatile and efficient method of analyzing distribution mixtures. J Fish Res Bd Can 36: 987–1001

    Google Scholar 

  • McHugh D (1989) Population structure and reproductive biology of two sympatric hydrothermal vent polychactes, Paralvinella pandorae and P. palmiformis. Mar Biol 103: 95–106

    Google Scholar 

  • McHugh D (1993) A comparative study of reproduction and development in the polychaete family Terebellidae. Biol Bull mar biol Lab, Woods Hole 185: 153–167

    Google Scholar 

  • McHugh D, Tunnicliffe V (1994) Ecology and reproductive biology of the hydrothermal vent polychaete Amphisamytha galapagensis (Ampharetidae). Mar Ecol Prog Ser 106: 111–120

    Google Scholar 

  • Nyholm KG (1950) Contribution to the life-history of the ampharetid, Melinna cristata. Zool Bidr Upps 29: 79–93

    Google Scholar 

  • Olive PJW (1970) Reproduction of a Northumberland population of the polychaete Cirratulus cirratus. Mar Biol 5: 259–273

    Google Scholar 

  • Olive PJW, Clark RB (1978) Physiology of reproduction. In: Mill PJ (ed) Physiology of annelids. Academic Press, London, pp 271–368

    Google Scholar 

  • Schroeder PC, Hermans CO (1975) Annelida: Polychaeta. In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates. III. Annelids and echiurians. Academic Press, New York, pp 1–213

    Google Scholar 

  • Schultz A, Delaney JR, McDuff RE (1992) On the partitioning of heat flux between diffuse and point source seafloor venting. J geophys Res (Sec B) 97: 12299–12314

    Google Scholar 

  • Sinclair M (1988) Marine population. An essay on population regulation and speciation. Washington Sea Grant Program. University of Washington Press, Seattle

    Google Scholar 

  • Thorson G (1946) Reproduction and larval development of Danish marine bottom invertebrates with special reference to the planktonic larvae in the Sound (Øresund). Meddr Kommn for Danm Fisk- og Havunders (Ser Plankton) 4: 1–523

    Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25: 1–45

    Google Scholar 

  • Tunnicliffe V, Garrett JF, Johnson HP (1990) Physical and biological factors affecting the behaviour and mortality of hydrothermal vent tube-worms (vestimentiferans). Deep-Sea Res 37: 103–125

    Google Scholar 

  • Tunnicliffe V, Jensen RG (1987) Distribution and behaviour of the spider crab Macroregonia macrochira Sakai (Brachyura) around the hydrothermal vents of the northeast Pacific. Can J Zool 65: 2443–2449

    Google Scholar 

  • Tyler PA (1988) Seasonality in the deep-sea. Oceanogr mar Biol A Rev 26: 227–258

    Google Scholar 

  • Van Dover CL, Franks PJS, Ballard RD (1987) Prediction of hydrothermal vent locations from distributions of brachyuran crabs. Limnol Oceanogr 32: 1006–1010

    Google Scholar 

  • Watremez P, Kervevan C (1990) Origine des variations de l'activité hydrothermale: premiers éléments de réponse d'un modèle numérique simple. C r hebd Séanc Acad Sci, Paris (Sér II) 311: 153–158

    Google Scholar 

  • Wilson WH (1991) Sexual reproductive modes in polychaetes: classification and diversity. Bull mar Sci 48: 500–515

    Google Scholar 

  • Zal F, Desbruyères D, Jouin-Toulmond C (1994) Sexual dimorphism in Paralvinella grasslei, a polychaete annelid from deepsea hydrothermal vents. C r hebd Séanc Acad Sci, Paris (Sér III) 317: 42–48

    Google Scholar 

  • Zottoli RA (1974) Reproduction and larval development of the ampharetid polychaete Amphicteis floridus. Trans Am microsc Soc 93: 78–89

    Google Scholar 

  • Zottoli RA (1983) Amphisamytha galapagensis, a new species of ampharetid polychaete from the vicinity of abyssal hydrothermal vent in the Galápagos Rift, and the role of this species in rift ecosystems. Proc biol Soc Wash 96: 379–391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Rodríguez, Puerto Real

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zal, F., Jollivet, D., Chevaldonné, P. et al. Reproductive biology and population structure of the deep-sea hydrothermal vent worm Paralvinella grasslei (Polychaeta: Alvinellidae) at 13°N on the East Pacific Rise. Marine Biology 122, 637–648 (1995). https://doi.org/10.1007/BF00350685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350685

Keywords

Navigation