Skip to main content
Log in

New approaches to insect tissue culture

  • Published:
Cytotechnology Aims and scope Submit manuscript

Conclusion

Current methods of insect cell culture have produced a limited variety of cell types in an ever expanding list of insect cell lines. In developing midgut epithelial cell lines, we found that traditional methods in insect cell culture failed to provide healthy cells from mature tissues. Examination of mammalian cell culture literature for this particular cell type provided the insight required to successfully develop a cell-specific line (Baines et al., 1994). The potential applications for cell-specific lines from insects are numerous. This paper is a compilation of ideas that will hopefully enable other researchers to develop additional cell-specific lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AidleyDL (1985) Muscular contraction. In: KerkutGA & GilbertLI (eds) Comprehensive Insect Physiology Biochemistry and Pharmacology. Vol. 5 (pp. 407–438), Pergamon Press, New York.

    Google Scholar 

  • AloiLE & CherryRS (1994) Intracellular calcium response of Sf-9 insect cells exposed to intense fluid forces. J. Biotechnol. 33: 21–31.

    Google Scholar 

  • BainesD, BrownwrightA, SchwartzJ-L (1994) Establishment of primary and continuous cultures of midgut epithelial cells of the spruce budworm, gypsy moth and silkworm. J. Insect Physiol. 40: 347–357.

    Google Scholar 

  • BainesD, DesantisT & DownerRGH (1992) Octopamine and 5-hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach (Periplaneta americana) haemocytes. J. Insect Physiol. 38: 905–914.

    Google Scholar 

  • BainesRA & DownerRGH (1991) Pharmacological characterization of a 5-hydroxytryptamine-sensitive receptor/adenylate cyclase complex in the mandibular closer muscles of the cricket, Gryllus domestica. Archs. Insect Biochem. Physiol. 16: 153–163.

    Google Scholar 

  • BeadleDJ & HicksD (1985) Insect nerve culture. In: KerkutGA & GilbertLI (eds) Comprehensive Insect Physiology Biochemistry and Pharmacology. Vol. 5 (pp. 181–211) Pergamon Press, New York.

    Google Scholar 

  • BergerEM, FrankM & AbellMC (1980) Ecdysone-induced changes in protein synthesis in embryonic Drosophila cells in vitro. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 195–208) Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • BrooksMA, TsangKR & FreemanFA (1980) Cholesterol as a growth factor for insect cell lines. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 67–78) Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • ChewCS (1994) Parietal cell culture: new models and directions. Annu. Rev. Physiol. 56: 445–61.

    Google Scholar 

  • CherbasL, CherbasP, SavakisC, DemetriG, Manteuffel-CymborowskaM, YoungeCD & WilliamsCM (1980) Studies of ecdysteroid action on a Drosophila cell line. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 217–228) Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • CoastGM (1989) Stimulation of fluid secretion by single isolated malpighian tubules of the house cricket, Acheta domesticus. Physiol. Entomol. 14: 21–30.

    Google Scholar 

  • CourgeonAM, RoppM, RolletE, BeckerJ, MaisonhauteC, EchalierG & Best-BelpommeM (1989) Relationships between ecdysterone-induced cellular differentiation and aerobiosis in an in vitro Drosophila cell system. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 1 (pp. 93–97) CRC Press Inc, Florida.

    Google Scholar 

  • DavisTR, WickhamTJ, McKennaKA, GranadosRR, ShulerML & WoodHA (1993) Comparative recombinant protein production of eight insect cell lines. In Vitro Cell. Dev. Biol. 29A: 388–390.

    Google Scholar 

  • DownerRGH (1979) Trehalose production in isolated fat body of the American cockroach, Periplaneta americana. Comp. Biochem. Physiol. 62C: 31–34.

    Google Scholar 

  • DownerRGH & HiripiL (1993) Biogenic amines in insects. In: BorkovecAB & LoebMJ (eds) Insect neurochemistry and neurophysiology. (pp. 23–38) CRC press, Ann Arbor.

    Google Scholar 

  • DeutschmanDM & JagerV (1994) Optimization of the growth conditions of Sf21 insect cells for high-density perfusion culture in stirred-tank bioreactors. Enzyme Microb. Technol. 16: 506–512.

    Google Scholar 

  • EchalierG (1980) Necessity of radically new insect cell culture methods. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 589–592) Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • EnglishLH, MagelkyBK & MarksEP (1984) 20-Hydroxyecdysone-induced changes in the cell volume of lepidopteran cells associated with population dynamics. In Vitro 20: 71–78.

    Google Scholar 

  • EvansGS, FlintN & PottenCS (1994) Primary cultures for studies of cell regulation and physiology in intestinal epithelium. Annu. Rev. Physiol. 56: 399–417.

    Google Scholar 

  • FreshneyRI (1992) Introduction. In: FreshneyRI (ed) Culture of Epithelial Cells. (pp. 1–23) Wiley-Liss, New York.

    Google Scholar 

  • FreshneyRH (1994) Culture of animal cells. Wiley-Liss, New York.

    Google Scholar 

  • FusenigNE (1992) Cell interaction and epithelial differentiation. In: FreshneyRI (ed) Culture of Epithelial Cells. (pp. 25–57) Wiley-Liss, New York.

    Google Scholar 

  • GardinerGR & StockdaleH (1975) Two tissue culture media for production of Lepidopteran cells and nuclear polyhedrosis viruses. J. Invert. Pathol. 25: 363–370.

    Google Scholar 

  • GelernterWD & FedericiBA (1986) Continuous cell line from Spodoptera exigua (Lepidoptera: Noctuidae) that supports replication of nuclear polyhedrosis viruses from Spodoptera exigua and Autographa californica. J. Invert. Path. 48: 199–207.

    Google Scholar 

  • GraceTDC (1962) Establishment of four strains of cells from insect tissues grown in vitro. Nature 195: 788–789.

    Google Scholar 

  • GoleJWD, DownerRGH & SohiSS (1982) Octopamine-sensitive adenylate cyclase in haemocytes of the forest tent caterpillar, Malacosoma disstria Hubner (Lepidoptera: Lasiocampidae). Can. J. Zool. 60: 825–829.

    Google Scholar 

  • GoodwinRH & AdamJR (1980) Nutrient factors influencing viral replication in serum-free insect cell line culture. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 493–510) Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • Goodwin RH (1985) Growth of insect cells in serum-free media. Techniques in the Life Sciences: Setting Up and Maintenance of Tissue and Cell Cultures C(109): 1–28.

  • GoodwinRH (1989) Construction of peptoliposomes for the incorporation of nutrient lipid supplements in insect cell culture medium. J. Tissue Culture Methods 12: 17–20.

    Google Scholar 

  • GranadosRR & HashimotoY (1989) Infectivity of baculoviruses to cultured cells. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 2 (pp. 3–13) CRC Press Inc, Florida.

    Google Scholar 

  • GreeneAE, CharneyJ, NicholsWW & CoriellLL (1972) Species identity of insect cell lines. In Vitro 5: 313–322.

    Google Scholar 

  • HarveyGT & SohiSS (1989) Isozyme characterization of 8 Hymenopteran and 20 Lepidopteran Cell lines. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 1 (pp. 71–76) CRC Press Inc, Florida.

    Google Scholar 

  • HinkWF (1980) The 1979 compilation of invertebrate cell lines and culture media. In. Invertebrate Systems in vitro. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 553–578) Elsevier/North-Holland Biomedical Press New York.

    Google Scholar 

  • HinkWF & BezansonDR (1985) Invertebrate cell culture media and cell lines. Techniques in the Life Sciences: Setting Up and Maintenance of Tissue and Cell Cultures. C111: 1–30.

    Google Scholar 

  • HinkWF & HallRL (1989) Recently established cell lines. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 2 (pp. 269–293) CRC Press Inc, Florida.

    Google Scholar 

  • HinkWF & StraussEM (1980) Semi-continuous culture of the TN-368 cell line in fermenters with virus production in harvested cells. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 27–34) Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • HouseCR & GinsbergBL (1979) Pharmacology of cockroach salivary secretion. Comp. Biochem. Physiol. 63C: 1–6.

    Google Scholar 

  • JohnsonDE (1994) Cellular toxicities and membrane binding characteristics of insecticidal crystal proteins from Bacillus thuringiensis toward cultured insect cells. J. Invert. Pathol. 63: 123–129.

    Google Scholar 

  • KurodaY & ShimadaY. (1989) Electron microscopic studies on in vitro differentiated cells from Drosophila embryos. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 1 (pp. 77–89) CRC Press Inc, Florida.

    Google Scholar 

  • KurttiTJ & BrooksMA (1977) Isolation of cell lines from embryos of the cockroach, Blattella germanica. In Vitro 13: 11–17.

    Google Scholar 

  • KurttiTJ & MunderlohUG (1989) Advances in the definition of culture media for mosquito cells. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 1 (pp. 21–30) CRC Press Inc, Florida.

    Google Scholar 

  • LeeSH & ParkTH (1994) Growth limiting factors influencing high density culture of insect cells in Grace's medium. Biotechnol. Lett. 16: 327–332.

    Google Scholar 

  • LoebMJ (1991a) Development of isolated spermducts from Heliothis virescens (Lepidoptera)in vitro. Invert. Reprod. Develop. 21: 67–73.

    Google Scholar 

  • LoebMJ (1991b) Growth and development of spermducts of the tobacco budworm moth Heliothis virescens, in vivo and in vitro. Invert. Reprod. and Dev. 19: 97–105.

    Google Scholar 

  • LoebMJ, BrandtEP & WoodsCW (1989) Testes of the tobacco budworm moth: ecdysteroid production by the testis sheath. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 1 (pp. 105–110) CRC Press Inc, Florida.

    Google Scholar 

  • LynnDE (1989) Methods for the development of cell lines from insects. J. Tissue Culture Methods 12: 23–29.

    Google Scholar 

  • LynnDE & OberlanderH (1989) Characterization of cell lines derived from imaginal disks of three species of Lepidoptera. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 2 (pp. 207–212) CRC Press Inc, Florida.

    Google Scholar 

  • LynnDE, FeldlauferMF & LusbyWR (1987) Isolation and identification of 20-hydroxyecdysone from a Lepidopteran continuous cell line. Arch. Insect Biochem. Physiol. 5: 71–79.

    Google Scholar 

  • McIntoschAH, EversD & ShamyR (1976) A toxic substance in fetal bovine serum (abstract). In Vitro 12: 302.

    Google Scholar 

  • MitsuhashiJ (1989) Nutritional requirements of insect cells in vitro. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 1 (pp. 3–20) CRC Press Inc, Florida.

    Google Scholar 

  • MitsuhashiJ & GoodwinRH (1989) Serum-free cultures of insect cells in vitro. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 1 (pp. 31–44) CRC Press Inc, Florida.

    Google Scholar 

  • MitsuhashiJ & ShozawaA (1985) Continuous cell lines from larval haemocytes of the cabbage armyworm, Mamestra brassicae. Develop. Growth and Differ. 27: 599–60

    Google Scholar 

  • MordueW, GoldsworthyGJ, BradyJ & WMBlaney (1980) Insect Physiology, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • NoriegaFG & WellsWA (1992) Oxygen-carrying perfluorochemical emulsions improve insect fat body culture performance. Insect Biochem. Molec. Biol. 22: 585–590.

    Google Scholar 

  • OberlanderH, LeachCE, LankaS, & WillisJH (1987) Ecdysteroid action on moth epithelial tissues and cell lines. Arch. Insect Biochem. Physiol. 5: 81–89.

    Google Scholar 

  • OddouP, HartmannH, RadeckeF & GeiserM (1993) Immunologically unrelated Heliothis sp. and Spodoptera sp. midgut membrane-proteins bind Bacillus thuringiensis CryIA(b) δ-endotoxin. FEBS 212: 145–150.

    Google Scholar 

  • OkaiY (1985) Insect fibroblast-like cells release inhibitory peptides of lymphocyte DNA synthesis into serum-free culture medium. Insect Biochem. 15: 483–487.

    Google Scholar 

  • PannabeckerTL, AndrewsF & BeyenbachKW (1992). A quantitative analysis of the osmolytes in the hemolymph of the larval gypsy moth, Lymantria dispar. J. Insect Physiol. 38: 823–830.

    Google Scholar 

  • PorcheronP (1991) Insect tissue culture systems: models for study of hormonal control of development. In Vitro Cell. Dev. Biol. 27A: 479–482.

    Google Scholar 

  • QuiotJM, ParadisS & LouisC (1985) Establishment of a cell line (SPC G1 13) from dorsal vessels of Gromphadorhina laevigata, saussure, and zentner (Dictyoptera: Blattidae). In Vitro Cell. Develop. Biol. 21: 603–605.

    Google Scholar 

  • RiddifordLM, KiguchiK, RoselandCR, ChenAC & WolfgangWJ (1980) Cuticle formation and sclerotization in vitro by the epidermis of the tobacco hornworm, Manduca sexta. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 103–117) Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • RochfordR, DoughertyEM & LynnDE (1984) Establishment of a cell line from embryos of the cabbage looper, Trichoplusia ni. In Vitro 20: 823–825.

    Google Scholar 

  • Sadrud-Din S, Hakim RS & Loeb M (1992) Establishment of a midgut cell culture from Lepidoptera (abstract). In Vitro 28: 40A(I-1019).

  • Stanley-SamuelsonDW (1994) Assessing the significance of prostaglandins and other eicosanoids in insect physiology. J. Insect Physiol. 40: 3–11.

    Google Scholar 

  • SangJH (1980) Drosophila cell lines. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 3–12) Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • SatoT (1989) Establishment of eight cell lines from neonate larvae of tortricids (Lepidoptera) and their several characteristics including susceptibility to insect viruses. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 2 (pp. 187–198) CRC Press Inc, Florida.

    Google Scholar 

  • SoderhallK & SmithVJ (1983) Separation of the haemocyte populations of Carcinus maenas and other marine decapods, prophenoloxidase distribution. Dev. comp. Immunol. 7: 229–239.

    Google Scholar 

  • SohiSS (1968) In vitro cultivation of Choristoneura fumiferana (Clemins) (Lepidopteran: Tortricidae) tissues. Can. J. Zool. 46: 11–13.

    Google Scholar 

  • SohiSS (1971) In vitro cultivation of haemocytes of Malacosoma disstria Hubner (Lepidoptera: Lasiocampidae). Can. J. Zool. 49: 1355–1358.

    Google Scholar 

  • SohiSS (1973) In vitro culture of larval tissues of Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). In: J.Rehacek, BlaskovicD & HinkWF (eds), Proceedings Third International Colloquim on Invertebrate Tissue Culture (pp. 75–89) Publishing House of the Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • SohiSS (1980) The effect of pH and osmotic pressure on the growth and survival of three Lepidopteran cell lines. In: KurstakE, MaramoroschK & DubendorferA (eds) Invertebrate Systems in vitro (pp. 35–43) Elsevier/North-Holland Biomedical Press, New York.

    Google Scholar 

  • SteelJE (1993) Serotonin: a putative regulator of glycogen metabolism in the CNS of the cockroach, Periplaneta americana. In: BorkovecAB & LoebMJ (eds) Insect Neurochemistry and Neurophysiology (pp. 141–144) CRC Press, Ann Arbor.

    Google Scholar 

  • StipanovicRD, ElissaldeMH, AltmanDW & NormanJO (1990) Cell culture bioassay to evaluate allelochemical toxicity to Heliothis virescens (Lepidoptera: Noctuidae). J. Econ. Entomol. 83: 737–741.

    Google Scholar 

  • TakagiM, OkumuraH, OkadaT, KobayashiN, KiyotaT & UedaK (1994) An oxygen supply strategy for the large-scale production of tissue plasminogen activator by microcarrier cell culture. J. Ferment. Bioeng. 77: 301–306.

    Google Scholar 

  • UiK, UedaR & MiyakeT (1989) In vitro culture of cells from dissociated imaginal disks of Drosophila melanogaster. In: MitsuhashiJ (ed) Invertebrate Cell System Applications. Vol. 2 (pp. 213–221) CRC Press Inc, Florida.

    Google Scholar 

  • VaughnJL, GoodwinRH, TompkinsJ, & McCawleyP (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13: 213–217.

    Google Scholar 

  • VaughnJL (1985) Insect tissue culture: techniques and development. Techniques in the Life Sciences: Setting Up and Maintenance of Tissue and Cell Cultures C108: 1–35.

    Google Scholar 

  • WangM-Y & BentleyWE (1994) Continuous insect cell (Sf-9) culture with aeration through sparging. Appli. Microbiol. Biotechnol. 41: 317–323.

    Google Scholar 

  • WardGB, KellyTJ, WoodsCW & MarksEP (1987) Ecdysteroid production by a continuous insect cell line. Arch. Insect Biochem. Physiol. 5: 91–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baines, D. New approaches to insect tissue culture. Cytotechnology 20, 13–22 (1996). https://doi.org/10.1007/BF00350385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350385

Key words

Navigation