Skip to main content
Log in

Characterization of in vivo absorption features of chlorophyte, phaeophyte and rhodophyte algal species

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Despite the plentiful diversity of macroalgae in coastal environments, few studies have examined the in vivo absorption features of common marine macrophytes. Here we report on results of a survey of 12 central California common intertidal and subtidal taxa, representing Chlorophyta, Phaeophyta and Rhodophyta carried out in the summer of 1988. Computer-assisted analyses were used to obtain fourth-derivative spectra from in vivo absorption spectra determined at room temperature to obtain spectral diagnostics for the different algal divisions and to provide a means to determine whether spectral features could be used to identify stress responses among these plants. Among the Chlorophyta, characteristic maxima for chlorophylls a and b were resolved in all species examined, and a spectral component attributable to siphonaxanthin-like carotenoid(s) was observed in two Ulva species and the coenocytic alga Derbesia marina. Representatives of the Phaeophyta were characterized by similar maxima for chlorophyll a and c, and for fucoxanthin. Among the Rhodophyta, maxima for chlorophyll a, as well as B- and R-type phycoerythrin were resolved. Differences in in vivo absorption features were detected for two tidal populations of Porphyra perforata and Mastocarpus papillatus. High-tidal thalli absorb less green light in regions characterized by phycoerythrin, but have enhanced carotenoid absorption compared with lowtidal thalli. Resolution of spectra by fourth-derivative analysis revealed significant differences in phycoerythrin and carotenoid contents. The spectral changes observed appear to reflect environmental and possibly populational characteristics of these algae. The spectral analyses described here provide robust, non-invasive means to characterize subtle responses of macroalgae to environment in ways not possible previously. Additional merits of these fourth-derivative analyses for use in environmental studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, I. A., Hollenberg, G. J. (1976). Marine algae of California. Stanford University Press, Stanford, California, USA

    Google Scholar 

  • Alberte, R. S., Andersen, R. A. (1986). Antheraxanthin, a light harvesting carotenoid in a chromophyte alga. Pl. Physiol. 80: 583–587

    Google Scholar 

  • Alberte, R. S., Friedman, A. L., Gustafson, D., Rudnick, M., Lyman, H. (1981). Light harvesting system of brown algae and diatoms: isolation and characterization of chlorophyll a/c and chlorophyll a/fucoxanthin pigment-protein complexes. Biochim. biophys. Acta 635: 304–316

    Google Scholar 

  • Anderson, J. M. (1985). Chlorophyll-protein complexes of a marine green alga, Codium species (Siphonales). Biochim. biophys. Acta 806: 145–153

    Google Scholar 

  • Bidigare, R. R., Morrow, J. H., Kiefer, D. A. (1989). Derivative analysis of spectral absorption by photosynthetic pigments in the Western Sargasso Sea. J. mar. Res. 47: 322–341

    Google Scholar 

  • Britton, G. (1984). The biochemistry of natural pigments. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Brown, J. S., Alberte, R. S., Thornber, J. P. (1975). Comparative studies on the occurrence and spectral composition of chlorophyll-protein complexes in a wide variety of plant material. In: Avron, M. (ed..) Proceedings of the Third International Congress on Photosynthesis (1974) at Rehovot, Israel, Elsevier, Amsterdam, p. 1951–1962

    Google Scholar 

  • Butler, W. L. (1972). Chapter 1. Absorption spectroscopy of biological materials. Meth. Enzym. 24B: 3–25

    Google Scholar 

  • Butler, W. L., Hopkins, D. W. (1970a). Higher derivative analysis of complex absorption spectra. Photochem. Photobiol. 12: 439–450

    Google Scholar 

  • Butler, W. L., Hopkins, D. W. (1970b). An analysis of fourth derivative spectra. Photochem. Photobiol. 12: 451–456

    Google Scholar 

  • Dring, M. J. (1982) The biology of marine plants. Edward Arnold, London

    Google Scholar 

  • French, C. S., Brown, J. S., Lawrence, M. (1972). Four universal forms of chlorophyll a. Pl. Physiol. 49: 421–429

    Google Scholar 

  • Friedman, A. L., Alberte, R. S. (1984). A diatom light-harvesting pigment-protein complex. Purification and characterization. Pl. Physiol. 76: 483–489

    Google Scholar 

  • Friedman, A. L., Alberte, R. S. (1986). Biogenesis and light regulation of the major light harvesting chlorophyll-protein of diatoms. Pl. Physiol. 80: 43–51

    Google Scholar 

  • Friedman, A. L., Alberte, R. S. (1987). Phylogenetic distribution of the major diatom light harvesting pigment-protein determined by immunological methods. J. Phycol. 23: 427–433

    Google Scholar 

  • Fork, D. C., Satoh, K. (1986). The control by state transitions of the distribution of excitation energy in photosynthesis. A. Rev. Pl. Physiol. 37: 335–361

    Google Scholar 

  • Gasanov, R. A., French, C. S. (1973). Chlorophyll composition and photochemical activity of photosystems detached from chloroplast grana and stroma lamellae. Proc. natn. Acad. Sci. U.S.A. 70: 2082–2085

    Google Scholar 

  • Goodwin, T. W. (1980). The biochemistry of the carotenoids. Vol. 1. Plants. Chapman & Hall, London, England

    Google Scholar 

  • Halldal, P. (1974). Light and photosynthesis of different marine algal groups. In: Jerlov, N. G., Steemann Nielsen, E. (eds.) Optical aspects of oceanography. Academic Press, London, p. 345–360

    Google Scholar 

  • Haxo, F. T. (1985). Photosynthetic action spectrum of the coccolithophorid, Emiliania huxleyi (Haptophyceae): 19′ hexanoyloxyfucoxanthin as antenna pigment. J. Phycol. 21: 282–287

    Google Scholar 

  • Haxo, F. T., Blinks, L. R. (1950). Photosynthetic action spectra of marine algae. J. gen. Physiol. 33: 389–342

    Google Scholar 

  • Haxo, F. T., Neori, A., White, M. (1984). Photosynthetic action spectra of chloromonads. J. Protozool. 31: p. 25a

    Google Scholar 

  • Hoek, van den, C., Stam, W. T., Olsen, J. L. (1988). The emergence of a new chlorophytan system, and Dr. Kornmann's contribution thereto. Helgoländer Meersunters. 42: 339–383

    Google Scholar 

  • Jeffrey, S. W. (1980). Algal pigment systems. In: Falkowski, P. G. (ed.) Primary productivity in the sea. Plenum Press, New York, p. 33–58

    Google Scholar 

  • Jeffrey, S. W., Sielicke, M., Haxo, F. T. (1975). Chloroplast pigment patterns in dinoflagellates. J. Phycol. 11: 374–384

    Google Scholar 

  • Kageyama, A., Yokohama, Y., Shimura, S., Ikawa, T. (1977). An efficient excitation energy transfer from a carotenoid, siphonaxanthin to chlorophyll a observed in a deep water species of chlorophycean seaweed. Pl. Cell Physiol. Tokyo 18: 477–480

    Google Scholar 

  • Kirk, J. T. O., Tilney-Bassett, R. A. E. (1978). The plastids. 2nd ed. Elsevier, Amsterdam

    Google Scholar 

  • Kursar, T., Alberte, R. S. (1983). Photosynthetic unit organization in red algae. Relationships between light harvesting pigments and reaction centers. Pl. Physiol. 72: 409–414

    Google Scholar 

  • Larkum, A. W. D., Barrett, J. (1983). Light-harvesting processes in algae. Adv. bot. Res. 10: 1–219

    Google Scholar 

  • Lüning, K. (1981). Photobiology of seaweeds: ecophysiological aspects. Proc. int. Seaweed Symp. (Goteborg, 1981) 10: 33–55 [Levring, T. (ed) Walter de Gruyter, Berlin]

    Google Scholar 

  • Owens, T. G., Gallagher, J. C., Alberte, R. S. (1987). Photosynthetic light-harvesting function of violaxanthin in Nannochloropsis spp. (Eustigmatophyceae). J. Phycol. 23: 79–85

    Google Scholar 

  • Paerl, H. W. (1984). Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom-forming genera. Oecologia 61: 143–149

    Google Scholar 

  • Paerl, H. W., Bland, P. T., Bowles, N. D., Haibac, M. E. (1985). Adaptation to high-intensity, low wavelength light among surface blooms of the cyanobacterium Microcystis aeruginosa. Appl. envirl Microbiol. 49: 1046–1052

    Google Scholar 

  • Paerl, H. W., Tucker, W. J., Bland, P. T. (1983). Carotenoid enhancement and its role in maintaining blue-green algae (Microcystis aeruginosa) surface blooms. Limnol. Oceanogr. 28: 847–857

    Google Scholar 

  • Polanshek, A., West, J. A. (1977). Culture and hybridization studies on Gigartina papillata (Rhodophyta). J. Phycol. 13: 141–149

    Google Scholar 

  • Prézclin, B. B., Ley, A. C., Haxo, F. T. (1976). Effects of growth irradiance on the photosynthetic action spectra of the marine dinoflagellate, Glenodinium sp. Planta 130: 251–256

    Google Scholar 

  • Rowan, K. S. (1981). Chapter 16; Photosynthetic pigments. In: Clayton, M. N., King, R. J. (eds.) Marine botany: an Australasian perspective. Longmans Chesire Pty Ltd., Melbourne, Australia, p. 335–369

    Google Scholar 

  • Satoh, K., Katoh, S. (1979). Two electrogenic mechanisms contributing to the 560 nm absorption changes in intact Bryopsis chloroplasts. Biochim. biophys. Acta 545: 454–465

    Google Scholar 

  • Smith, C. M., Berry, J. A. (1986) Recovery of photosynthesis after exposure of intertidal algae to temperature and osmotic stress: comparative studies of species with differing distributional limits. Oecologia 70: 6–12

    Google Scholar 

  • Vesk, M., Jeffrey, S. W. (1977). Effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes. J. Phycol. 13: 280–288

    Google Scholar 

  • Yokohama, Y., Kageyama, A., Ikawa, T., Shimura, S. (1977). A carotenoid characteristic of chlorophycean seaweeds living in deep coastal waters. Botanica mar. 20: 433–436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

This contribution is dedicated to the memory of Professor L. R. Blinks, a pioneer in photosynthesis research and algal physiology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C.M., Alberte, R.S. Characterization of in vivo absorption features of chlorophyte, phaeophyte and rhodophyte algal species. Marine Biology 118, 511–521 (1994). https://doi.org/10.1007/BF00350308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350308

Keywords

Navigation