Skip to main content
Log in

Carbohydrate digestion in Penaeus monodon

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Using crude homogenates from the digestive system of pond-cultured Penaeus monodon, carbohydrase activity was demonstrated toward a wide variety of substrates differing in sources and complexity. The largest concentration of this activity was found to be localised within the midgut gland. Multiple pH optima for the hydrolysis of starch suggested the presence of more than one amylase, which was confirmed by partial purification using chromatofocusing. Enzyme characterisation of the amylase activity suggested exohydrolysis in the form of a glucoamylase and possible endohydrolysis in the form of an α-amylase. The complexity of the enzyme profile demonstrated in P. monodon is discussed in relation to possible sources of carbohydrate found in natural food items.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman SH, Kanazawa A, Teshima S (1979) Effects of dietary carbohydrate on the growth and levels of the hepatopancreatic glycogen and serum glucose of the prawn. Bull Jap Soc Scient Fish 45 (12):1491–1494

    Google Scholar 

  • Ahamad Ali S (1993) Evaluation of different carbohydrates in the diet of the prawn Penaeus indicus. J Aqua Trop 8:13–23

    Google Scholar 

  • Bell TA, Lightner DV (1988) A handbook of normal penaeid shrimp histology. The World Aquaculture Society, Baton Rouge, Louisiana

    Google Scholar 

  • Biddle GN (1977) The nutrition of Macrobrachium species. In: Hanson JA, Goodwin HL (eds) Shrimp and prawn farming in the Western Hemisphere. Dowden, Hutchinson and Ross, Stroudsbury, pp 272–291

    Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the algae, 2nd edn. Prentice-Hall, London

    Google Scholar 

  • Boucher J, Laurec A, Samain JF, Smith SL (1976) Etude de la nutrition, du régimeet du rythme alimentaire du zooplancton dans le conditions naturelles par la mesure des activités enzymatiques digestives. Proc 10th Eur mar Biol Symp 2:123–138 [Persoone G, Jaspers F (eds) Universa Press, Wetteren, Belgium]

    Google Scholar 

  • Chrost RJ (1989) Characterisation and significance of β-glucosidase activity in lakewater. Limnol Oceanogol 34(4):660–672

    Google Scholar 

  • Clifford C, Walsh J, Reidy N, Johnson DB (1982) Digestive enzymes and subcellular localization of disaccharidases in some Echinoderms. Comp Biochem Physiol 71 B:105–110

    Google Scholar 

  • Cox JL (1981) Laminarinase induction in marine zooplankton and its variability in zooplankton samples. J Plankton Res 3:346–356

    Google Scholar 

  • Decho AW, Moriarty DJW (1990) Bacterial exopolymer utilisation by a harpacticoid copepod: a methodology and results. Limnol Oceanogr 35(5):1039–1049

    Google Scholar 

  • Friesen JA, Mann KH, Willison JHM (1986) Gross anatomy and fine structure of the gut of the marine mysid shrimp Mysis stenolepis (Smith). Can J Zool 64:431–441

    Google Scholar 

  • Gretz MR, Hoagland KD, DeNicola DM (1993) Diatom adhesion mechanisms: characterisation of stalks of Achnanthes longipes and Cymbella cistula. Proceedings of the Annual meeting of the Phycological Society of America, Ames, Iwoa, USA (abstract only)

  • Griffith DRW, Laborde E, Wigglesworth JM (1992) Biological and economic implications of penaeid larval rearing using benthic diatoms. Proceedings of the 1st Annual Aquaculture Conference, 18–23 October 1992, Guayaquil, Ecuador

  • Hasset RP, Landry MR (1983) Effects of food-level acclimation on digestive enzyme activities and feeding behaviour of Calnus pacificus. Mar Biol 75:47–55

    Google Scholar 

  • Heywood RB, Whitaker TM (1984) The Antarctic marine flora. In: Laws RM (ed) Antarctic ecology, Vol. 2. Academic Press, London, pp 373–419

    Google Scholar 

  • Hylleberg J (1976) Resource partitioning on the basis of hydrolytic enzymes in deposit feeding mud snails (Hydrobiidae) Oecologia 23:115–125

    Google Scholar 

  • Kanazawa A (1983) Penaeid nutrition. In: Pruder GE, Langdon CJ, Conklin DE (eds) Proceedings of the Second International Conference on Aquaculture Nutrition: biochemical and physiological approaches to shellfish nutrition. Louisiana State University, Division of Continuing Education, Baton Rouge Louisiana, pp 87–105

    Google Scholar 

  • Klinger TS (1984) Activities and kinetics of digestive α-and β-glucosidase and β-galactosidase of five species of echinoids (Echinodermata). Comp Biochem Physiol 78 A(3):597–600

    Google Scholar 

  • Kristensen E, Anderson FØ, Blackburn TH (1992) Effects of benthic macrofauna and temperature on degradation of macroalgal detritus: the fate of organic carbon. Limnol Oceanogr 37(7): 1404–1419

    Google Scholar 

  • Kristensen JH (1972) Carbohydrases of some marine invertebrates with notes on their food and on the natural occurrence of the carbohydrates studies. Mar Biol 14:130–142

    Google Scholar 

  • Laubie-Bonichon A, Van-Wormhoudt A, Sellos D (1977) Croissance larvaire controllee de Penaeus japonicus enzymes digestives et changements de regimes alimentaires. Proc 3rd Int Council Explor Sea (ICES) Meeting, Brest, CNEXO 4:131–145

    Google Scholar 

  • Lee PG, Blake NJ, Rodrick GE (1980) A quantitative analysis of digestive enzymes for the freshwater prawn Macrobrachium rosenbergii. Proc Wld Maricult Soc 11:392–402

    Google Scholar 

  • Lirdwitayaprasit T, Okaichi T, Montani S, Ochi T, Anderson DM (1990) Changes in cell chemical composition during the life cycle of Scripsiella trochoidea (Dinophyceae). J Phycol 26:299–306

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurements with folin phenol reagent. J biol Chem 193:265–275

    Google Scholar 

  • Manners DJ, Stark JR (1974) α-(1→4)-D-glucans. Part XXII. The iodine staining properties of linear maltosacharides. Starke 26:78–81

    Google Scholar 

  • Marshall JJ (1974) Application of enzymic methods to the structural hydrolysis of polysaccharides. Part 1. Adv Carbohyd Chem Biochem 30:257–370

    Google Scholar 

  • Maugle PD, Deshimaru O, Katayama T, Simpson KL (1983) The use of amylase supplements in shrimp diets. J Wld Maricult Soc 14: 25–37

    Google Scholar 

  • Maugle PD, Deshimaru O, Kulayama S, Simpson KL (1982) Characteristics of amylase and protease of the shrimp Penaeus japonicus. Comp Biochem Physiol 48(12):1753–1757

    Google Scholar 

  • McHugh DJ (1987) Production and utilization of products from commercial seaweeds. FAO Technical Paper #288. FAO, Rome

    Google Scholar 

  • Miller GL (1959) Protein determination for large numbers of samples. Analyst Chem 31:964

    Google Scholar 

  • Paulsen BS, Henriques VAA, Klaveness D (1992) Structure of extracellular polysaccharides produced by a soil Cryptomonas sp. (Cryptophceae). J Phycol 28:61–63

    Google Scholar 

  • Pickney JL, Zingmark RG (1993) Modelling the annual production of intertidal benthic microalgae in estuarine ecosystems. J Phycol 29:396–407

    Google Scholar 

  • Robson CM (1979) Purification and properties of the digestive amylase of Asellus aquaticus (L) (Crustacea: Isopoda). Comp Biochem Physiol 62B:501–505

    Google Scholar 

  • Robyt JF, Whelan WJ (1968) The β-amylases. In: Radley JA (ed) Starch and its derivatives. Chapman & Hall, London, pp 477–497

    Google Scholar 

  • Roche-Mayzaud O, Mayzaud P (1987) Purification of endo-and exolaminarase and partial characterisation of the exo-acting form from the copepod Arcartia clausi. Comp Biochem Physiol 88(1):105–110

    Google Scholar 

  • Sather BT (1969) A comparative study of amylases and proteinases in some Decapod crustacea. Comp Biochem Physiol 28:371–379

    Google Scholar 

  • Stark JR, Walker RS (1983) Carbohydrate digestion in Pecten maximus. Comp Biochem Physiol 73B:173–177

    Google Scholar 

  • Sullivan MJ, Moncrieff CA (1988) Primary production of edaphic algal communities in a Mississippi salt marsh. J Phycol 24:49–58

    Google Scholar 

  • Tacon AGJ (1990) Standard methods for the nutrition and feeding of farmed fish and shrimp. Argent Laboratories Press, Redmond, Washington

    Google Scholar 

  • Trainer DG, Tillinghast EK (1982) Amylolytic activity of the crystalline style of Mya arenaria (Bivalvia, Mollusca). Comp Biochem Physiol 72 A:99–103

    Google Scholar 

  • Trevelyan WE, Procter DP, Harrison JS (1950) Detection of sugars on paper chromatograms. Nature, Lond 166:444–445

    Google Scholar 

  • Vallee BL, Riordan JF (1969) Chemical approaches to the properties of active sites of enzymes. A Rev Biochem 38:733

    Google Scholar 

  • Van-Wormhoudt A (1980) Adaptation des activities digestives de leurs cycles et de leur controle aux facteurs du mileu chez Palaemon serratus. These de Doctorat es Sciences Aix-Marseille Marseille

  • Van-Wormhoudt A (1981) Regulation d'activite de l' α-amylase a differentes temperatues d'adaptation et en fonction de l'ablation des pe' doncules ocularies et du state de mue chez Palaemon serratus. Biochem Syst Ecol 8:193–203

    Google Scholar 

  • Van-Wormhoudt A (1983) Immunoquantitative variations of amylase during the moult cycle at different seasons in Palaemon serratus. Mar Biol 74:127–132

    Google Scholar 

  • Van-Wormhoudt A, Ceccaldi H, Martin B (1980) Adaptation of the level of hepatopancreatic digestive enzymes in Palaemon serratus (Crustacea: Decapoda) to the composition of experimental diets. Aquaculture, Amsterdam 21:63–78

    Google Scholar 

  • Van-Wormhoudt A, Fauvel P (1988) Electrophoretic characterisation of Palaemon elegans (Crustacea: Decapoda) α-amylase system: study of amylase polymorphism during the intermoult cycle. Comp Biochem Physiol 89B(2):201–207

    Google Scholar 

  • Vogt G (1985) Histologie und Cytologie der Mitteldarmdrüse von Penaeus monodon (Decapoda). Zool Anz 215(1/2):61–80

    Google Scholar 

  • Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol 29:69–78

    Google Scholar 

  • Webb K, Chu FE (1983) Phytoplankton as a food source for bivalve larvae. In: Pruder GE, Langdon CJ, Conklin DE (eds) Proceedings of the Second International Conference on Aquaculture Nutrition: biochemical and physiological approaches to shellfish nutrition. Louisiana State University, Division of Continuing Education, Baton Rouge, Louisiana, pp 272–291

    Google Scholar 

  • Whitaker JR (1972) Principles of enzymology for the food sciences. Marcel Dekker, New York

    Google Scholar 

  • Wikfors GH, Twarog JW, Ukeles R (1984) Influence of chemical composition of algal food sources on growth of juvenile oysters, Crassostrea virginica. Biol Bull mar biol Lab, Woods Hole 167:251–263

    Google Scholar 

  • Wikfors GH, Ukeles HR, Ferris GE (1989) Nutrient deficiency and storage products in cultured diatoms: do centric and pennate diatoms respond alike? Proceedings of the Annual Meeting of the Phycological Society, Toronto, Canada (abstract only)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wigglesworth, J.M., Griffith, D.R.W. Carbohydrate digestion in Penaeus monodon . Marine Biology 120, 571–578 (1994). https://doi.org/10.1007/BF00350077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350077

Keywords

Navigation